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PREFACE

BACKGROUND AND PURPOSE

As in the previous three editions, the primary objective of the fourth edition
of Basic Econometrics is to provide an elementary but comprehensive intro-
duction to econometrics without resorting to matrix algebra, calculus, or
statistics beyond the elementary level.

In this edition I have attempted to incorporate some of the developments
in the theory and practice of econometrics that have taken place since the
publication of the third edition in 1995. With the availability of sophisti-
cated and user-friendly statistical packages, such as Eviews, Limdep,
Microfit, Minitab, PcGive, SAS, Shazam, and Stata, it is now possible to dis-
cuss several econometric techniques that could not be included in the pre-
vious editions of the book. I have taken full advantage of these statistical
packages in illustrating several examples and exercises in this edition.

I was pleasantly surprised to find that my book is used not only by eco-
nomics and business students but also by students and researchers in sev-
eral other disciplines, such as politics, international relations, agriculture,
and health sciences. Students in these disciplines will find the expanded dis-
cussion of several topics very useful.

THE FOURTH EDITION

The major changes in this edition are as follows:

1. In the introductory chapter, after discussing the steps involved in tra-
ditional econometric methodology, I discuss the very important question of
how one chooses among competing econometric models.

2. In Chapter 1, I discuss very briefly the measurement scale of eco-
nomic variables. It is important to know whether the variables are ratio
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scale, interval scale, ordinal scale, or nominal scale, for that will determine
the econometric technique that is appropriate in a given situation.

3. The appendices to Chapter 3 now include the large-sample properties
of OLS estimators, particularly the property of consistency.

4. The appendix to Chapter 5 now brings into one place the properties
and interrelationships among the four important probability distributions
that are heavily used in this book, namely, the normal, t, chi square, and F.

5. Chapter 6, on functional forms of regression models, now includes a
discussion of regression on standardized variables.

6. To make the book more accessible to the nonspecialist, I have moved
the discussion of the matrix approach to linear regression from old Chapter 9
to Appendix C. Appendix C is slightly expanded to include some advanced
material for the benefit of the more mathematically inclined students. The
new Chapter 9 now discusses dummy variable regression models.

7. Chapter 10, on multicollinearity, includes an extended discussion of
the famous Longley data, which shed considerable light on the nature and
scope of multicollinearity.

8. Chapter 11, on heteroscedasticity, now includes in the appendix an
intuitive discussion of White’s robust standard errors.

9. Chapter 12, on autocorrelation, now includes a discussion of the
Newey–West method of correcting the OLS standard errors to take into ac-
count likely autocorrelation in the error term. The corrected standard errors
are known as HAC standard errors. This chapter also discusses briefly the
topic of forecasting with autocorrelated error terms.

10. Chapter 13, on econometric modeling, replaces old Chapters 13 and
14. This chapter has several new topics that the applied researcher will find
particularly useful. They include a compact discussion of model selection
criteria, such as the Akaike information criterion, the Schwarz information
criterion, Mallows’s Cp criterion, and forecast chi square. The chapter also
discusses topics such as outliers, leverage, influence, recursive least squares,
and Chow’s prediction failure test. This chapter concludes with some cau-
tionary advice to the practitioner about econometric theory and economet-
ric practice.

11. Chapter 14, on nonlinear regression models, is new. Because of the
easy availability of statistical software, it is no longer difficult to estimate
regression models that are nonlinear in the parameters. Some econometric
models are intrinsically nonlinear in the parameters and need to be esti-
mated by iterative methods. This chapter discusses and illustrates some
comparatively simple methods of estimating nonlinear-in-parameter regres-
sion models.

12. Chapter 15, on qualitative response regression models, which re-
places old Chapter 16, on dummy dependent variable regression models,
provides a fairly extensive discussion of regression models that involve a
dependent variable that is qualitative in nature. The main focus is on logit
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and probit models and their variations. The chapter also discusses the
Poisson regression model, which is used for modeling count data, such as the
number of patents received by a firm in a year; the number of telephone
calls received in a span of, say, 5 minutes; etc. This chapter has a brief dis-
cussion of multinomial logit and probit models and duration models.

13. Chapter 16, on panel data regression models, is new. A panel data
combines features of both time series and cross-section data. Because of in-
creasing availability of panel data in the social sciences, panel data regres-
sion models are being increasingly used by researchers in many fields. This
chapter provides a nontechnical discussion of the fixed effects and random
effects models that are commonly used in estimating regression models
based on panel data.

14. Chapter 17, on dynamic econometric models, has now a rather ex-
tended discussion of the Granger causality test, which is routinely used (and
misused) in applied research. The Granger causality test is sensitive to the
number of lagged terms used in the model. It also assumes that the under-
lying time series is stationary.

15. Except for new problems and minor extensions of the existing esti-
mation techniques, Chapters 18, 19, and 20 on simultaneous equation mod-
els are basically unchanged. This reflects the fact that interest in such mod-
els has dwindled over the years for a variety of reasons, including their poor
forecasting performance after the OPEC oil shocks of the 1970s.

16. Chapter 21 is a substantial revision of old Chapter 21. Several concepts
of time series econometrics are developed and illustrated in this chapter. The
main thrust of the chapter is on the nature and importance of stationary
time series. The chapter discusses several methods of finding out if a given
time series is stationary. Stationarity of a time series is crucial for the appli-
cation of various econometric techniques discussed in this book.

17. Chapter 22 is also a substantial revision of old Chapter 22. It discusses
the topic of economic forecasting based on the Box–Jenkins (ARIMA) and
vector autoregression (VAR) methodologies. It also discusses the topic of
measuring volatility in financial time series by the techniques of autoregres-
sive conditional heteroscedasticity (ARCH) and generalized autoregressive con-
ditional heteroscedasticity (GARCH).

18. Appendix A, on statistical concepts, has been slightly expanded. Ap-
pendix C discusses the linear regression model using matrix algebra. This is
for the benefit of the more advanced students.

As in the previous editions, all the econometric techniques discussed in
this book are illustrated by examples, several of which are based on con-
crete data from various disciplines. The end-of-chapter questions and prob-
lems have several new examples and data sets. For the advanced reader,
there are several technical appendices to the various chapters that give
proofs of the various theorems and or formulas developed in the text.
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ORGANIZATION AND OPTIONS

Changes in this edition have considerably expanded the scope of the text. I
hope this gives the instructor substantial flexibility in choosing topics that
are appropriate to the intended audience. Here are suggestions about how
this book may be used.

One-semester course for the nonspecialist: Appendix A, Chapters 1
through 9, an overview of Chapters 10, 11, 12 (omitting all the proofs).

One-semester course for economics majors: Appendix A, Chapters 1
through 13.

Two-semester course for economics majors: Appendices A, B, C,
Chapters 1 to 22. Chapters 14 and 16 may be covered on an optional basis.
Some of the technical appendices may be omitted.

Graduate and postgraduate students and researchers: This book is a
handy reference book on the major themes in econometrics.

SUPPLEMENTS

Data CD

Every text is packaged with a CD that contains the data from the text in
ASCII or text format and can be read by most software packages.

Student Solutions Manual

Free to instructors and salable to students is a Student Solutions Manual
(ISBN 0072427922) that contains detailed solutions to the 475 questions
and problems in the text.

EViews

With this fourth edition we are pleased to provide Eviews Student Ver-
sion 3.1 on a CD along with all of the data from the text. This software is
available from the publisher packaged with the text (ISBN: 0072565705).
Eviews Student Version is available separately from QMS. Go to
http://www.eviews.com for further information.

Web Site

A comprehensive web site provides additional material to support the study
of econometrics. Go to www.mhhe.com/econometrics/gujarati4.
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INTRODUCTION

I.1 WHAT IS ECONOMETRICS?

Literally interpreted, econometrics means “economic measurement.” Al-
though measurement is an important part of econometrics, the scope of
econometrics is much broader, as can be seen from the following quotations:

Econometrics, the result of a certain outlook on the role of economics, consists of
the application of mathematical statistics to economic data to lend empirical sup-
port to the models constructed by mathematical economics and to obtain
numerical results.1

. . . econometrics may be defined as the quantitative analysis of actual economic
phenomena based on the concurrent development of theory and observation, re-
lated by appropriate methods of inference.2

Econometrics may be defined as the social science in which the tools of economic
theory, mathematics, and statistical inference are applied to the analysis of eco-
nomic phenomena.3

Econometrics is concerned with the empirical determination of economic 
laws.4

1Gerhard Tintner, Methodology of Mathematical Economics and Econometrics, The Univer-
sity of Chicago Press, Chicago, 1968, p. 74.

2P. A. Samuelson, T. C. Koopmans, and J. R. N. Stone, “Report of the Evaluative Committee
for Econometrica,” Econometrica, vol. 22, no. 2, April 1954, pp. 141–146.

3Arthur S. Goldberger, Econometric Theory, John Wiley & Sons, New York, 1964, p. 1.
4H. Theil, Principles of Econometrics, John Wiley & Sons, New York, 1971, p. 1.
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5E. Malinvaud, Statistical Methods of Econometrics, Rand McNally, Chicago, 1966, p. 514.
6Adrian C. Darnell and J. Lynne Evans, The Limits of Econometrics, Edward Elgar Publish-

ing, Hants, England, 1990, p. 54.
7T. Haavelmo, “The Probability Approach in Econometrics,” Supplement to Econometrica,

vol. 12, 1944, preface p. iii.

The art of the econometrician consists in finding the set of assumptions that are
both sufficiently specific and sufficiently realistic to allow him to take the best
possible advantage of the data available to him.5

Econometricians . . . are a positive help in trying to dispel the poor public image
of economics (quantitative or otherwise) as a subject in which empty boxes are
opened by assuming the existence of can-openers to reveal contents which any
ten economists will interpret in 11 ways.6

The method of econometric research aims, essentially, at a conjunction of eco-
nomic theory and actual measurements, using the theory and technique of statis-
tical inference as a bridge pier.7

I.2 WHY A SEPARATE DISCIPLINE?

As the preceding definitions suggest, econometrics is an amalgam of eco-
nomic theory, mathematical economics, economic statistics, and mathe-
matical statistics. Yet the subject deserves to be studied in its own right for
the following reasons.

Economic theory makes statements or hypotheses that are mostly quali-
tative in nature. For example, microeconomic theory states that, other
things remaining the same, a reduction in the price of a commodity is ex-
pected to increase the quantity demanded of that commodity. Thus, eco-
nomic theory postulates a negative or inverse relationship between the price
and quantity demanded of a commodity. But the theory itself does not pro-
vide any numerical measure of the relationship between the two; that is, it
does not tell by how much the quantity will go up or down as a result of a
certain change in the price of the commodity. It is the job of the econome-
trician to provide such numerical estimates. Stated differently, economet-
rics gives empirical content to most economic theory.

The main concern of mathematical economics is to express economic
theory in mathematical form (equations) without regard to measurability or
empirical verification of the theory. Econometrics, as noted previously, is
mainly interested in the empirical verification of economic theory. As we
shall see, the econometrician often uses the mathematical equations pro-
posed by the mathematical economist but puts these equations in such a
form that they lend themselves to empirical testing. And this conversion of
mathematical into econometric equations requires a great deal of ingenuity
and practical skill.

Economic statistics is mainly concerned with collecting, processing, and
presenting economic data in the form of charts and tables. These are the
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8Aris Spanos, Probability Theory and Statistical Inference: Econometric Modeling with Obser-
vational Data, Cambridge University Press, United Kingdom, 1999, p. 21.

9For an enlightening, if advanced, discussion on econometric methodology, see David F.
Hendry, Dynamic Econometrics, Oxford University Press, New York, 1995. See also Aris
Spanos, op. cit.

jobs of the economic statistician. It is he or she who is primarily responsible
for collecting data on gross national product (GNP), employment, unem-
ployment, prices, etc. The data thus collected constitute the raw data for
econometric work. But the economic statistician does not go any further,
not being concerned with using the collected data to test economic theories.
Of course, one who does that becomes an econometrician.

Although mathematical statistics provides many tools used in the trade,
the econometrician often needs special methods in view of the unique na-
ture of most economic data, namely, that the data are not generated as the
result of a controlled experiment. The econometrician, like the meteorolo-
gist, generally depends on data that cannot be controlled directly. As Spanos
correctly observes:

In econometrics the modeler is often faced with observational as opposed to
experimental data. This has two important implications for empirical modeling
in econometrics. First, the modeler is required to master very different skills
than those needed for analyzing experimental data. . . . Second, the separation
of the data collector and the data analyst requires the modeler to familiarize
himself/herself thoroughly with the nature and structure of data in question.8

I.3 METHODOLOGY OF ECONOMETRICS

How do econometricians proceed in their analysis of an economic problem?
That is, what is their methodology? Although there are several schools of
thought on econometric methodology, we present here the traditional or
classical methodology, which still dominates empirical research in eco-
nomics and other social and behavioral sciences.9

Broadly speaking, traditional econometric methodology proceeds along
the following lines:

1. Statement of theory or hypothesis.
2. Specification of the mathematical model of the theory
3. Specification of the statistical, or econometric, model
4. Obtaining the data
5. Estimation of the parameters of the econometric model
6. Hypothesis testing
7. Forecasting or prediction
8. Using the model for control or policy purposes.

To illustrate the preceding steps, let us consider the well-known Keynesian
theory of consumption.
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FIGURE I.1 Keynesian consumption function.

10John Maynard Keynes, The General Theory of Employment, Interest and Money, Harcourt
Brace Jovanovich, New York, 1936, p. 96.

1. Statement of Theory or Hypothesis

Keynes stated:

The fundamental psychological law . . . is that men [women] are disposed, as a
rule and on average, to increase their consumption as their income increases, but
not as much as the increase in their income.10

In short, Keynes postulated that the marginal propensity to consume
(MPC), the rate of change of consumption for a unit (say, a dollar) change
in income, is greater than zero but less than 1.

2. Specification of the Mathematical Model of Consumption

Although Keynes postulated a positive relationship between consumption
and income, he did not specify the precise form of the functional relation-
ship between the two. For simplicity, a mathematical economist might sug-
gest the following form of the Keynesian consumption function:

Y = β1 + β2 X 0 < β2 < 1 (I.3.1)

where Y = consumption expenditure and X = income, and where β1 and β2,
known as the parameters of the model, are, respectively, the intercept and
slope coefficients.

The slope coefficient β2 measures the MPC. Geometrically, Eq. (I.3.1) is as
shown in Figure I.1. This equation, which states that consumption is lin-
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early related to income, is an example of a mathematical model of the rela-
tionship between consumption and income that is called the consumption
function in economics. A model is simply a set of mathematical equations.
If the model has only one equation, as in the preceding example, it is called
a single-equation model, whereas if it has more than one equation, it is
known as a multiple-equation model (the latter will be considered later in
the book).

In Eq. (I.3.1) the variable appearing on the left side of the equality sign
is called the dependent variable and the variable(s) on the right side are
called the independent, or explanatory, variable(s). Thus, in the Keynesian
consumption function, Eq. (I.3.1), consumption (expenditure) is the depen-
dent variable and income is the explanatory variable.

3. Specification of the Econometric Model of Consumption

The purely mathematical model of the consumption function given in
Eq. (I.3.1) is of limited interest to the econometrician, for it assumes that
there is an exact or deterministic relationship between consumption and
income. But relationships between economic variables are generally inexact.
Thus, if we were to obtain data on consumption expenditure and disposable
(i.e., aftertax) income of a sample of, say, 500 American families and plot
these data on a graph paper with consumption expenditure on the vertical
axis and disposable income on the horizontal axis, we would not expect all
500 observations to lie exactly on the straight line of Eq. (I.3.1) because, in
addition to income, other variables affect consumption expenditure. For ex-
ample, size of family, ages of the members in the family, family religion, etc.,
are likely to exert some influence on consumption.

To allow for the inexact relationships between economic variables, the
econometrician would modify the deterministic consumption function
(I.3.1) as follows:

Y = β1 + β2 X + u (I.3.2)

where u, known as the disturbance, or error, term, is a random (stochas-
tic) variable that has well-defined probabilistic properties. The disturbance
term u may well represent all those factors that affect consumption but are
not taken into account explicitly.

Equation (I.3.2) is an example of an econometric model. More techni-
cally, it is an example of a linear regression model, which is the major
concern of this book. The econometric consumption function hypothesizes
that the dependent variable Y (consumption) is linearly related to the ex-
planatory variable X (income) but that the relationship between the two is
not exact; it is subject to individual variation.

The econometric model of the consumption function can be depicted as
shown in Figure I.2.
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FIGURE I.2 Econometric model of the Keynesian consumption function.

4. Obtaining Data

To estimate the econometric model given in (I.3.2), that is, to obtain the
numerical values of β1 and β2, we need data. Although we will have more to
say about the crucial importance of data for economic analysis in the next
chapter, for now let us look at the data given in Table I.1, which relate to

TABLE I.1 DATA ON Y (PERSONAL CONSUMPTION EXPENDITURE)
AND X (GROSS DOMESTIC PRODUCT, 1982–1996), BOTH
IN 1992 BILLIONS OF DOLLARS

Year Y X

1982 3081.5 4620.3
1983 3240.6 4803.7
1984 3407.6 5140.1
1985 3566.5 5323.5
1986 3708.7 5487.7
1987 3822.3 5649.5
1988 3972.7 5865.2
1989 4064.6 6062.0
1990 4132.2 6136.3
1991 4105.8 6079.4
1992 4219.8 6244.4
1993 4343.6 6389.6
1994 4486.0 6610.7
1995 4595.3 6742.1
1996 4714.1 6928.4

Source: Economic Report of the President, 1998, Table B–2, p. 282.
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FIGURE I.3 Personal consumption expenditure (Y ) in relation to GDP (X ), 1982–1996, both in billions of 1992
dollars.

the U.S. economy for the period 1981–1996. The Y variable in this table is
the aggregate (for the economy as a whole) personal consumption expen-
diture (PCE) and the X variable is gross domestic product (GDP), a measure
of aggregate income, both measured in billions of 1992 dollars. Therefore,
the data are in “real” terms; that is, they are measured in constant (1992)
prices. The data are plotted in Figure I.3 (cf. Figure I.2). For the time being
neglect the line drawn in the figure.

5. Estimation of the Econometric Model

Now that we have the data, our next task is to estimate the parameters of
the consumption function. The numerical estimates of the parameters give
empirical content to the consumption function. The actual mechanics of es-
timating the parameters will be discussed in Chapter 3. For now, note that
the statistical technique of regression analysis is the main tool used to
obtain the estimates. Using this technique and the data given in Table I.1,
we obtain the following estimates of β1 and β2, namely, −184.08 and 0.7064.
Thus, the estimated consumption function is:

Ŷ = −184.08 + 0.7064Xi (I.3.3)

The hat on the Y indicates that it is an estimate.11 The estimated consump-
tion function (i.e., regression line) is shown in Figure I.3.

11As a matter of convention, a hat over a variable or parameter indicates that it is an esti-
mated value.
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As Figure I.3 shows, the regression line fits the data quite well in that the
data points are very close to the regression line. From this figure we see that
for the period 1982–1996 the slope coefficient (i.e., the MPC) was about
0.70, suggesting that for the sample period an increase in real income of
1 dollar led, on average, to an increase of about 70 cents in real consumption
expenditure.12 We say on average because the relationship between con-
sumption and income is inexact; as is clear from Figure I.3; not all the data
points lie exactly on the regression line. In simple terms we can say that, ac-
cording to our data, the average, or mean, consumption expenditure went up
by about 70 cents for a dollar’s increase in real income.

6. Hypothesis Testing

Assuming that the fitted model is a reasonably good approximation of
reality, we have to develop suitable criteria to find out whether the esti-
mates obtained in, say, Eq. (I.3.3) are in accord with the expectations of the
theory that is being tested. According to “positive” economists like Milton
Friedman, a theory or hypothesis that is not verifiable by appeal to empiri-
cal evidence may not be admissible as a part of scientific enquiry.13

As noted earlier, Keynes expected the MPC to be positive but less than 1.
In our example we found the MPC to be about 0.70. But before we accept
this finding as confirmation of Keynesian consumption theory, we must en-
quire whether this estimate is sufficiently below unity to convince us that
this is not a chance occurrence or peculiarity of the particular data we have
used. In other words, is 0.70 statistically less than 1? If it is, it may support
Keynes’ theory.

Such confirmation or refutation of economic theories on the basis of
sample evidence is based on a branch of statistical theory known as statis-
tical inference (hypothesis testing). Throughout this book we shall see
how this inference process is actually conducted.

7. Forecasting or Prediction

If the chosen model does not refute the hypothesis or theory under consid-
eration, we may use it to predict the future value(s) of the dependent, or
forecast, variable Y on the basis of known or expected future value(s) of the
explanatory, or predictor, variable X.

To illustrate, suppose we want to predict the mean consumption expen-
diture for 1997. The GDP value for 1997 was 7269.8 billion dollars.14 Putting

12Do not worry now about how these values were obtained. As we show in Chap. 3, the
statistical method of least squares has produced these estimates. Also, for now do not worry
about the negative value of the intercept.

13See Milton Friedman, “The Methodology of Positive Economics,” Essays in Positive Eco-
nomics, University of Chicago Press, Chicago, 1953.

14Data on PCE and GDP were available for 1997 but we purposely left them out to illustrate
the topic discussed in this section. As we will discuss in subsequent chapters, it is a good idea
to save a portion of the data to find out how well the fitted model predicts the out-of-sample
observations.
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this GDP figure on the right-hand side of (I.3.3), we obtain:

Ŷ1997 = −184.0779 + 0.7064 (7269.8)

= 4951.3167
(I.3.4)

or about 4951 billion dollars. Thus, given the value of the GDP, the mean,
or average, forecast consumption expenditure is about 4951 billion dol-
lars. The actual value of the consumption expenditure reported in 1997 was
4913.5 billion dollars. The estimated model (I.3.3) thus overpredicted
the actual consumption expenditure by about 37.82 billion dollars. We
could say the forecast error is about 37.82 billion dollars, which is about
0.76 percent of the actual GDP value for 1997. When we fully discuss the
linear regression model in subsequent chapters, we will try to find out if
such an error is “small” or “large.” But what is important for now is to note
that such forecast errors are inevitable given the statistical nature of our
analysis.

There is another use of the estimated model (I.3.3). Suppose the Presi-
dent decides to propose a reduction in the income tax. What will be the ef-
fect of such a policy on income and thereby on consumption expenditure
and ultimately on employment?

Suppose that, as a result of the proposed policy change, investment ex-
penditure increases. What will be the effect on the economy? As macroeco-
nomic theory shows, the change in income following, say, a dollar’s worth of
change in investment expenditure is given by the income multiplier M,
which is defined as

M = 1
1 − MPC

(I.3.5)

If we use the MPC of 0.70 obtained in (I.3.3), this multiplier becomes about
M = 3.33. That is, an increase (decrease) of a dollar in investment will even-
tually lead to more than a threefold increase (decrease) in income; note that
it takes time for the multiplier to work.

The critical value in this computation is MPC, for the multiplier depends
on it. And this estimate of the MPC can be obtained from regression models
such as (I.3.3). Thus, a quantitative estimate of MPC provides valuable in-
formation for policy purposes. Knowing MPC, one can predict the future
course of income, consumption expenditure, and employment following a
change in the government’s fiscal policies.

8. Use of the Model for Control or Policy Purposes

Suppose we have the estimated consumption function given in (I.3.3).
Suppose further the government believes that consumer expenditure of
about 4900 (billions of 1992 dollars) will keep the unemployment rate at its
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Estimation of econometric model

Econometric model of theory

Economic theory
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control or policy purposes

Hypothesis testing

Mathematical model of theory

FIGURE I.4 Anatomy of econometric modeling.

current level of about 4.2 percent (early 2000). What level of income will
guarantee the target amount of consumption expenditure?

If the regression results given in (I.3.3) seem reasonable, simple arith-
metic will show that

4900 = −184.0779 + 0.7064X (I.3.6)

which gives X = 7197, approximately. That is, an income level of about
7197 (billion) dollars, given an MPC of about 0.70, will produce an expendi-
ture of about 4900 billion dollars.

As these calculations suggest, an estimated model may be used for con-
trol, or policy, purposes. By appropriate fiscal and monetary policy mix, the
government can manipulate the control variable X to produce the desired
level of the target variable Y.

Figure I.4 summarizes the anatomy of classical econometric modeling.

Choosing among Competing Models

When a governmental agency (e.g., the U.S. Department of Commerce) col-
lects economic data, such as that shown in Table I.1, it does not necessarily
have any economic theory in mind. How then does one know that the data
really support the Keynesian theory of consumption? Is it because the
Keynesian consumption function (i.e., the regression line) shown in Fig-
ure I.3 is extremely close to the actual data points? Is it possible that an-



Gujarati: Basic 
Econometrics, Fourth 
Edition

Front Matter Introduction © The McGraw−Hill 
Companies, 2004

INTRODUCTION 11

15Milton Friedman, A Theory of Consumption Function, Princeton University Press,
Princeton, N.J., 1957.

16R. Hall, “Stochastic Implications of the Life Cycle Permanent Income Hypothesis: Theory
and Evidence,” Journal of Political Economy, 1978, vol. 86, pp. 971–987.

17R. W. Miller, Fact and Method: Explanation, Confirmation, and Reality in the Natural and
Social Sciences, Princeton University Press, Princeton, N.J., 1978, p. 176.

18Clive W. J. Granger, Empirical Modeling in Economics, Cambridge University Press, U.K.,
1999, p. 58.

other consumption model (theory) might equally fit the data as well? For ex-
ample, Milton Friedman has developed a model of consumption, called the
permanent income hypothesis.15 Robert Hall has also developed a model of
consumption, called the life-cycle permanent income hypothesis.16 Could one
or both of these models also fit the data in Table I.1?

In short, the question facing a researcher in practice is how to choose
among competing hypotheses or models of a given phenomenon, such as
the consumption–income relationship. As Miller contends:

No encounter with data is step towards genuine confirmation unless the hypoth-
esis does a better job of coping with the data than some natural rival. . . . What
strengthens a hypothesis, here, is a victory that is, at the same time, a defeat for a
plausible rival.17

How then does one choose among competing models or hypotheses? Here
the advice given by Clive Granger is worth keeping in mind:18

I would like to suggest that in the future, when you are presented with a new piece
of theory or empirical model, you ask these questions:

(i) What purpose does it have? What economic decisions does it help with?
and;

(ii) Is there any evidence being presented that allows me to evaluate its qual-
ity compared to alternative theories or models?

I think attention to such questions will strengthen economic research and
discussion.

As we progress through this book, we will come across several competing
hypotheses trying to explain various economic phenomena. For example,
students of economics are familiar with the concept of the production func-
tion, which is basically a relationship between output and inputs (say, capi-
tal and labor). In the literature, two of the best known are the Cobb–Douglas
and the constant elasticity of substitution production functions. Given the
data on output and inputs, we will have to find out which of the two pro-
duction functions, if any, fits the data well.

The eight-step classical econometric methodology discussed above is
neutral in the sense that it can be used to test any of these rival hypotheses.

Is it possible to develop a methodology that is comprehensive enough to
include competing hypotheses? This is an involved and controversial topic.
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Classical Bayesian
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FIGURE I.5 Categories of econometrics.

We will discuss it in Chapter 13, after we have acquired the necessary
econometric theory.

I.4 TYPES OF ECONOMETRICS

As the classificatory scheme in Figure I.5 suggests, econometrics may be
divided into two broad categories: theoretical econometrics and applied
econometrics. In each category, one can approach the subject in the clas-
sical or Bayesian tradition. In this book the emphasis is on the classical
approach. For the Bayesian approach, the reader may consult the refer-
ences given at the end of the chapter.

Theoretical econometrics is concerned with the development of appro-
priate methods for measuring economic relationships specified by econo-
metric models. In this aspect, econometrics leans heavily on mathematical
statistics. For example, one of the methods used extensively in this book is
least squares. Theoretical econometrics must spell out the assumptions of
this method, its properties, and what happens to these properties when one
or more of the assumptions of the method are not fulfilled.

In applied econometrics we use the tools of theoretical econometrics to
study some special field(s) of economics and business, such as the produc-
tion function, investment function, demand and supply functions, portfolio
theory, etc.

This book is concerned largely with the development of econometric
methods, their assumptions, their uses, their limitations. These methods are
illustrated with examples from various areas of economics and business.
But this is not a book of applied econometrics in the sense that it delves
deeply into any particular field of economic application. That job is best left
to books written specifically for this purpose. References to some of these
books are provided at the end of this book.

I.5 MATHEMATICAL AND STATISTICAL PREREQUISITES

Although this book is written at an elementary level, the author assumes
that the reader is familiar with the basic concepts of statistical estimation
and hypothesis testing. However, a broad but nontechnical overview of the
basic statistical concepts used in this book is provided in Appendix A for
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the benefit of those who want to refresh their knowledge. Insofar as mathe-
matics is concerned, a nodding acquaintance with the notions of differential
calculus is desirable, although not essential. Although most graduate level
books in econometrics make heavy use of matrix algebra, I want to make it
clear that it is not needed to study this book. It is my strong belief that the
fundamental ideas of econometrics can be conveyed without the use of
matrix algebra. However, for the benefit of the mathematically inclined stu-
dent, Appendix C gives the summary of basic regression theory in matrix
notation. For these students, Appendix B provides a succinct summary of
the main results from matrix algebra.

I.6 THE ROLE OF THE COMPUTER

Regression analysis, the bread-and-butter tool of econometrics, these days
is unthinkable without the computer and some access to statistical soft-
ware. (Believe me, I grew up in the generation of the slide rule!) Fortunately,
several excellent regression packages are commercially available, both for
the mainframe and the microcomputer, and the list is growing by the day.
Regression software packages, such as ET, LIMDEP, SHAZAM, MICRO
TSP, MINITAB, EVIEWS, SAS, SPSS, STATA, Microfit, PcGive, and BMD
have most of the econometric techniques and tests discussed in this book.

In this book, from time to time, the reader will be asked to conduct
Monte Carlo experiments using one or more of the statistical packages.
Monte Carlo experiments are “fun” exercises that will enable the reader to
appreciate the properties of several statistical methods discussed in this
book. The details of the Monte Carlo experiments will be discussed at ap-
propriate places.

I.7 SUGGESTIONS FOR FURTHER READING

The topic of econometric methodology is vast and controversial. For those
interested in this topic, I suggest the following books:

Neil de Marchi and Christopher Gilbert, eds., History and Methodology of
Econometrics, Oxford University Press, New York, 1989. This collection of
readings discusses some early work on econometric methodology and has
an extended discussion of the British approach to econometrics relating to
time series data, that is, data collected over a period of time.

Wojciech W. Charemza and Derek F. Deadman, New Directions in Econo-
metric Practice: General to Specific Modelling, Cointegration and Vector Auto-
gression, 2d ed., Edward Elgar Publishing Ltd., Hants, England, 1997. The
authors of this book critique the traditional approach to econometrics and
give a detailed exposition of new approaches to econometric methodology.

Adrian C. Darnell and J. Lynne Evans, The Limits of Econometrics, Edward
Elgar Publishers Ltd., Hants, England, 1990. The book provides a somewhat
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balanced discussion of the various methodological approaches to economet-
rics, with renewed allegiance to traditional econometric methodology.

Mary S. Morgan, The History of Econometric Ideas, Cambridge University
Press, New York, 1990. The author provides an excellent historical perspec-
tive on the theory and practice of econometrics, with an in-depth discussion
of the early contributions of Haavelmo (1990 Nobel Laureate in Economics)
to econometrics. In the same spirit, David F. Hendry and Mary S. Morgan,
The Foundation of Econometric Analysis, Cambridge University Press, U.K.,
1995, have collected seminal writings in econometrics to show the evolution
of econometric ideas over time.

David Colander and Reuven Brenner, eds., Educating Economists, Univer-
sity of Michigan Press, Ann Arbor, Michigan, 1992, present a critical, at times
agnostic, view of economic teaching and practice.

For Bayesian statistics and econometrics, the following books are very
useful: John H. Dey, Data in Doubt, Basic Blackwell Ltd., Oxford University
Press, England, 1985. Peter M. Lee, Bayesian Statistics: An Introduction,
Oxford University Press, England, 1989. Dale J. Porier, Intermediate Statis-
tics and Econometrics: A Comparative Approach, MIT Press, Cambridge,
Massachusetts, 1995. Arnold Zeller, An Introduction to Bayesian Inference in
Econometrics, John Wiley & Sons, New York, 1971, is an advanced reference
book.
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PARTONE
SINGLE-EQUATION

REGRESSION MODELS

Part I of this text introduces single-equation regression models. In these
models, one variable, called the dependent variable, is expressed as a linear
function of one or more other variables, called the explanatory variables.
In such models it is assumed implicitly that causal relationships, if any,
between the dependent and explanatory variables flow in one direction only,
namely, from the explanatory variables to the dependent variable.

In Chapter 1, we discuss the historical as well as the modern interpreta-
tion of the term regression and illustrate the difference between the two in-
terpretations with several examples drawn from economics and other fields.

In Chapter 2, we introduce some fundamental concepts of regression
analysis with the aid of the two-variable linear regression model, a model
in which the dependent variable is expressed as a linear function of only a
single explanatory variable.

In Chapter 3, we continue to deal with the two-variable model and intro-
duce what is known as the classical linear regression model, a model that
makes several simplifying assumptions. With these assumptions, we intro-
duce the method of ordinary least squares (OLS) to estimate the parameters
of the two-variable regression model. The method of OLS is simple to apply,
yet it has some very desirable statistical properties.

In Chapter 4, we introduce the (two-variable) classical normal linear re-
gression model, a model that assumes that the random dependent variable
follows the normal probability distribution. With this assumption, the OLS
estimators obtained in Chapter 3 possess some stronger statistical proper-
ties than the nonnormal classical linear regression model—properties that
enable us to engage in statistical inference, namely, hypothesis testing.
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Chapter 5 is devoted to the topic of hypothesis testing. In this chapter, we
try to find out whether the estimated regression coefficients are compatible
with the hypothesized values of such coefficients, the hypothesized values
being suggested by theory and/or prior empirical work.

Chapter 6 considers some extensions of the two-variable regression
model. In particular, it discusses topics such as (1) regression through the
origin, (2) scaling and units of measurement, and (3) functional forms of
regression models such as double-log, semilog, and reciprocal models.

In Chapter 7, we consider the multiple regression model, a model in
which there is more than one explanatory variable, and show how the
method of OLS can be extended to estimate the parameters of such models.

In Chapter 8, we extend the concepts introduced in Chapter 5 to the
multiple regression model and point out some of the complications arising
from the introduction of several explanatory variables.

Chapter 9 on dummy, or qualitative, explanatory variables concludes
Part I of the text. This chapter emphasizes that not all explanatory variables
need to be quantitative (i.e., ratio scale). Variables, such as gender, race, re-
ligion, nationality, and region of residence, cannot be readily quantified, yet
they play a valuable role in explaining many an economic phenomenon.



Gujarati: Basic 
Econometrics, Fourth 
Edition

I. Single−Equation 
Regression Models

1. The Nature of 
Regression Analysis

© The McGraw−Hill 
Companies, 2004

17

1Francis Galton, “Family Likeness in Stature,” Proceedings of Royal Society, London, vol. 40,
1886, pp. 42–72.

2K. Pearson and A. Lee, “On the Laws of Inheritance,’’ Biometrika, vol. 2, Nov. 1903,
pp. 357–462.

1
THE NATURE OF
REGRESSION ANALYSIS

As mentioned in the Introduction, regression is a main tool of econometrics,
and in this chapter we consider very briefly the nature of this tool.

1.1 HISTORICAL ORIGIN OF THE TERM REGRESSION

The term regression was introduced by Francis Galton. In a famous paper,
Galton found that, although there was a tendency for tall parents to have
tall children and for short parents to have short children, the average height
of children born of parents of a given height tended to move or “regress” to-
ward the average height in the population as a whole.1 In other words, the
height of the children of unusually tall or unusually short parents tends to
move toward the average height of the population. Galton’s law of universal
regression was confirmed by his friend Karl Pearson, who collected more
than a thousand records of heights of members of family groups.2 He found
that the average height of sons of a group of tall fathers was less than their
fathers’ height and the average height of sons of a group of short fathers
was greater than their fathers’ height, thus “regressing” tall and short sons
alike toward the average height of all men. In the words of Galton, this was
“regression to mediocrity.”
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FIGURE 1.1 Hypothetical distribution of sons’ heights corresponding to given heights of fathers.

1.2 THE MODERN INTERPRETATION OF REGRESSION

The modern interpretation of regression is, however, quite different.
Broadly speaking, we may say

Regression analysis is concerned with the study of the dependence of one vari-
able, the dependent variable, on one or more other variables, the explanatory vari-
ables, with a view to estimating and/or predicting the (population) mean or aver-
age value of the former in terms of the known or fixed (in repeated sampling)
values of the latter.

The full import of this view of regression analysis will become clearer as
we progress, but a few simple examples will make the basic concept quite
clear.

Examples

1. Reconsider Galton’s law of universal regression. Galton was inter-
ested in finding out why there was a stability in the distribution of heights
in a population. But in the modern view our concern is not with this expla-
nation but rather with finding out how the average height of sons changes,
given the fathers’ height. In other words, our concern is with predicting the
average height of sons knowing the height of their fathers. To see how this
can be done, consider Figure 1.1, which is a scatter diagram, or scatter-
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FIGURE 1.2 Hypothetical distribution of heights corresponding to selected ages.

3At this stage of the development of the subject matter, we shall call this regression line sim-
ply the line connecting the mean, or average, value of the dependent variable (son’s height) corre-
sponding to the given value of the explanatory variable (father’s height). Note that this line has a
positive slope but the slope is less than 1, which is in conformity with Galton’s regression to
mediocrity. (Why?)

gram. This figure shows the distribution of heights of sons in a hypothetical
population corresponding to the given or fixed values of the father’s height.
Notice that corresponding to any given height of a father is a range or dis-
tribution of the heights of the sons. However, notice that despite the vari-
ability of the height of sons for a given value of father’s height, the average
height of sons generally increases as the height of the father increases. To
show this clearly, the circled crosses in the figure indicate the average height
of sons corresponding to a given height of the father. Connecting these
averages, we obtain the line shown in the figure. This line, as we shall see, is
known as the regression line. It shows how the average height of sons
increases with the father’s height.3

2. Consider the scattergram in Figure 1.2, which gives the distribution
in a hypothetical population of heights of boys measured at fixed ages.
Corresponding to any given age, we have a range, or distribution, of heights.
Obviously, not all boys of a given age are likely to have identical heights.
But height on the average increases with age (of course, up to a certain age),
which can be seen clearly if we draw a line (the regression line) through the
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circled points that represent the average height at the given ages. Thus,
knowing the age, we may be able to predict from the regression line the
average height corresponding to that age.

3. Turning to economic examples, an economist may be interested in
studying the dependence of personal consumption expenditure on after-
tax or disposable real personal income. Such an analysis may be helpful
in estimating the marginal propensity to consume (MPC), that is, average
change in consumption expenditure for, say, a dollar’s worth of change in
real income (see Figure I.3).

4. A monopolist who can fix the price or output (but not both) may want
to find out the response of the demand for a product to changes in price.
Such an experiment may enable the estimation of the price elasticity (i.e.,
price responsiveness) of the demand for the product and may help deter-
mine the most profitable price.

5. A labor economist may want to study the rate of change of money
wages in relation to the unemployment rate. The historical data are shown
in the scattergram given in Figure 1.3. The curve in Figure 1.3 is an example
of the celebrated Phillips curve relating changes in the money wages to the
unemployment rate. Such a scattergram may enable the labor economist to
predict the average change in money wages given a certain unemployment
rate. Such knowledge may be helpful in stating something about the infla-
tionary process in an economy, for increases in money wages are likely to be
reflected in increased prices.
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FIGURE 1.3 Hypothetical Phillips curve.
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FIGURE 1.4 Money holding in relation to the inflation rate π.

6. From monetary economics it is known that, other things remaining
the same, the higher the rate of inflation π, the lower the proportion k of
their income that people would want to hold in the form of money, as de-
picted in Figure 1.4. A quantitative analysis of this relationship will enable
the monetary economist to predict the amount of money, as a proportion
of their income, that people would want to hold at various rates of inflation.

7. The marketing director of a company may want to know how the de-
mand for the company’s product is related to, say, advertising expenditure.
Such a study will be of considerable help in finding out the elasticity of
demand with respect to advertising expenditure, that is, the percent change
in demand in response to, say, a 1 percent change in the advertising budget.
This knowledge may be helpful in determining the “optimum” advertising
budget.

8. Finally, an agronomist may be interested in studying the dependence
of crop yield, say, of wheat, on temperature, rainfall, amount of sunshine,
and fertilizer. Such a dependence analysis may enable the prediction or
forecasting of the average crop yield, given information about the explana-
tory variables.

The reader can supply scores of such examples of the dependence of one
variable on one or more other variables. The techniques of regression analy-
sis discussed in this text are specially designed to study such dependence
among variables.
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4The word stochastic comes from the Greek word stokhos meaning “a bull’s eye.” The out-
come of throwing darts on a dart board is a stochastic process, that is, a process fraught with
misses.

1.3 STATISTICAL VERSUS DETERMINISTIC RELATIONSHIPS

From the examples cited in Section 1.2, the reader will notice that in re-
gression analysis we are concerned with what is known as the statistical, not
functional or deterministic, dependence among variables, such as those of
classical physics. In statistical relationships among variables we essentially
deal with random or stochastic4 variables, that is, variables that have prob-
ability distributions. In functional or deterministic dependency, on the
other hand, we also deal with variables, but these variables are not random
or stochastic.

The dependence of crop yield on temperature, rainfall, sunshine, and
fertilizer, for example, is statistical in nature in the sense that the explana-
tory variables, although certainly important, will not enable the agronomist
to predict crop yield exactly because of errors involved in measuring these
variables as well as a host of other factors (variables) that collectively affect
the yield but may be difficult to identify individually. Thus, there is bound
to be some “intrinsic” or random variability in the dependent-variable crop
yield that cannot be fully explained no matter how many explanatory vari-
ables we consider.

In deterministic phenomena, on the other hand, we deal with relationships
of the type, say, exhibited by Newton’s law of gravity, which states: Every
particle in the universe attracts every other particle with a force directly pro-
portional to the product of their masses and inversely proportional to the
square of the distance between them. Symbolically, F = k(m1m2/r2), where
F = force, m1 and m2 are the masses of the two particles, r = distance, and
k = constant of proportionality. Another example is Ohm’s law, which states:
For metallic conductors over a limited range of temperature the current C is
proportional to the voltage V; that is, C = ( 1

k )V where 1
k is the constant of

proportionality. Other examples of such deterministic relationships are
Boyle’s gas law, Kirchhoff’s law of electricity, and Newton’s law of motion.

In this text we are not concerned with such deterministic relationships.
Of course, if there are errors of measurement, say, in the k of Newton’s law
of gravity, the otherwise deterministic relationship becomes a statistical re-
lationship. In this situation, force can be predicted only approximately from
the given value of k (and m1, m2, and r), which contains errors. The variable
F in this case becomes a random variable.

1.4 REGRESSION VERSUS CAUSATION

Although regression analysis deals with the dependence of one variable on
other variables, it does not necessarily imply causation. In the words of
Kendall and Stuart, “A statistical relationship, however strong and however
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5M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Charles Griffin Publishers,
New York, 1961, vol. 2, chap. 26, p. 279.

6But as we shall see in Chap. 3, classical regression analysis is based on the assumption that
the model used in the analysis is the correct model. Therefore, the direction of causality may
be implicit in the model postulated.

7It is crucial to note that the explanatory variables may be intrinsically stochastic, but for
the purpose of regression analysis we assume that their values are fixed in repeated sampling
(that is, X assumes the same values in various samples), thus rendering them in effect non-
random or nonstochastic. But more on this in Chap. 3, Sec. 3.2.

suggestive, can never establish causal connection: our ideas of causation
must come from outside statistics, ultimately from some theory or other.”5

In the crop-yield example cited previously, there is no statistical reason to
assume that rainfall does not depend on crop yield. The fact that we treat
crop yield as dependent on rainfall (among other things) is due to nonsta-
tistical considerations: Common sense suggests that the relationship cannot
be reversed, for we cannot control rainfall by varying crop yield.

In all the examples cited in Section 1.2 the point to note is that a statisti-
cal relationship in itself cannot logically imply causation. To ascribe
causality, one must appeal to a priori or theoretical considerations. Thus, in
the third example cited, one can invoke economic theory in saying that con-
sumption expenditure depends on real income.6

1.5 REGRESSION VERSUS CORRELATION

Closely related to but conceptually very much different from regression
analysis is correlation analysis, where the primary objective is to measure
the strength or degree of linear association between two variables. The cor-
relation coefficient, which we shall study in detail in Chapter 3, measures
this strength of (linear) association. For example, we may be interested in
finding the correlation (coefficient) between smoking and lung cancer,
between scores on statistics and mathematics examinations, between high
school grades and college grades, and so on. In regression analysis, as al-
ready noted, we are not primarily interested in such a measure. Instead, we
try to estimate or predict the average value of one variable on the basis
of the fixed values of other variables. Thus, we may want to know whether
we can predict the average score on a statistics examination by knowing a
student’s score on a mathematics examination.

Regression and correlation have some fundamental differences that are
worth mentioning. In regression analysis there is an asymmetry in the way
the dependent and explanatory variables are treated. The dependent vari-
able is assumed to be statistical, random, or stochastic, that is, to have a
probability distribution. The explanatory variables, on the other hand, are
assumed to have fixed values (in repeated sampling),7 which was made ex-
plicit in the definition of regression given in Section 1.2. Thus, in Figure 1.2
we assumed that the variable age was fixed at given levels and height mea-
surements were obtained at these levels. In correlation analysis, on the
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8In advanced treatment of econometrics, one can relax the assumption that the explanatory
variables are nonstochastic (see introduction to Part II).

other hand, we treat any (two) variables symmetrically; there is no distinc-
tion between the dependent and explanatory variables. After all, the corre-
lation between scores on mathematics and statistics examinations is the
same as that between scores on statistics and mathematics examinations.
Moreover, both variables are assumed to be random. As we shall see, most
of the correlation theory is based on the assumption of randomness of vari-
ables, whereas most of the regression theory to be expounded in this book is
conditional upon the assumption that the dependent variable is stochastic
but the explanatory variables are fixed or nonstochastic.8

1.6 TERMINOLOGY AND NOTATION

Before we proceed to a formal analysis of regression theory, let us dwell
briefly on the matter of terminology and notation. In the literature the terms
dependent variable and explanatory variable are described variously. A repre-
sentative list is:

Dependent variable Explanatory variable

Explained variable Independent variable

Predictand Predictor

Regressand Regressor

Response Stimulus

Endogenous Exogenous

Outcome Covariate

Controlled variable Control variable

Although it is a matter of personal taste and tradition, in this text we will use
the dependent variable/explanatory variable or the more neutral, regressand
and regressor terminology.

If we are studying the dependence of a variable on only a single explana-
tory variable, such as that of consumption expenditure on real income,
such a study is known as simple, or two-variable, regression analysis.
However, if we are studying the dependence of one variable on more than

⇔⇔

⇔⇔

⇔⇔

⇔⇔

⇔⇔

⇔⇔

⇔⇔
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9See App. A for formal definition and further details.
10For an informative account, see Michael D. Intriligator, Econometric Models, Techniques,

and Applications, Prentice Hall, Englewood Cliffs, N.J., 1978, chap. 3.

one explanatory variable, as in the crop-yield, rainfall, temperature, sun-
shine, and fertilizer examples, it is known as multiple regression analysis.
In other words, in two-variable regression there is only one explanatory
variable, whereas in multiple regression there is more than one explana-
tory variable.

The term random is a synonym for the term stochastic. As noted earlier,
a random or stochastic variable is a variable that can take on any set of
values, positive or negative, with a given probability.9

Unless stated otherwise, the letter Y will denote the dependent variable
and the X’s (X1, X2, . . . , Xk) will denote the explanatory variables, Xk being
the kth explanatory variable. The subscript i or t will denote the ith or the tth
observation or value. Xki (or Xkt) will denote the ith (or tth) observation on
variable Xk. N (or T) will denote the total number of observations or values
in the population, and n (or t) the total number of observations in a sample.
As a matter of convention, the observation subscript i will be used for cross-
sectional data (i.e., data collected at one point in time) and the subscript t
will be used for time series data (i.e., data collected over a period of time).
The nature of cross-sectional and time series data, as well as the important
topic of the nature and sources of data for empirical analysis, is discussed in
the following section.

1.7 THE NATURE AND SOURCES OF DATA
FOR ECONOMIC ANALYSIS10

The success of any econometric analysis ultimately depends on the avail-
ability of the appropriate data. It is therefore essential that we spend some
time discussing the nature, sources, and limitations of the data that one
may encounter in empirical analysis.

Types of Data

Three types of data may be available for empirical analysis: time series,
cross-section, and pooled (i.e., combination of time series and cross-
section) data.

Time Series Data The data shown in Table I.1 of the Introduction are
an example of time series data. A time series is a set of observations on the
values that a variable takes at different times. Such data may be collected
at regular time intervals, such as daily (e.g., stock prices, weather reports),
weekly (e.g., money supply figures), monthly [e.g., the unemployment rate,
the Consumer Price Index (CPI)], quarterly (e.g., GDP), annually (e.g.,
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11To see this more clearly, we divided the data into four time periods: 1951:01 to 1962:12;
1963:01 to 1974:12; 1975:01 to 1986:12, and 1987:01 to 1999:09: For these subperiods the mean
values of the money supply (with corresponding standard deviations in parentheses) were, re-
spectively, 165.88 (23.27), 323.20 (72.66), 788.12 (195.43), and 1099 (27.84), all figures in bil-
lions of dollars. This is a rough indication of the fact that the money supply over the entire pe-
riod was not stationary.

government budgets), quinquennially, that is, every 5 years (e.g., the cen-
sus of manufactures), or decennially (e.g., the census of population).
Sometime data are available both quarterly as well as annually, as in the
case of the data on GDP and consumer expenditure. With the advent of
high-speed computers, data can now be collected over an extremely short
interval of time, such as the data on stock prices, which can be obtained lit-
erally continuously (the so-called real-time quote).

Although time series data are used heavily in econometric studies, they
present special problems for econometricians. As we will show in chapters
on time series econometrics later on, most empirical work based on time
series data assumes that the underlying time series is stationary. Although
it is too early to introduce the precise technical meaning of stationarity at
this juncture, loosely speaking a time series is stationary if its mean and vari-
ance do not vary systematically over time. To see what this means, consider
Figure 1.5, which depicts the behavior of the M1 money supply in the
United States from January 1, 1959, to July 31, 1999. (The actual data are
given in exercise 1.4.) As you can see from this figure, the M1 money supply
shows a steady upward trend as well as variability over the years, suggest-
ing that the M1 time series is not stationary.11 We will explore this topic fully
in Chapter 21.
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FIGURE 1.5 M1 money supply: United States, 1951:01–1999:09.
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Cross-Section Data Cross-section data are data on one or more vari-
ables collected at the same point in time, such as the census of population
conducted by the Census Bureau every 10 years (the latest being in year
2000), the surveys of consumer expenditures conducted by the University of
Michigan, and, of course, the opinion polls by Gallup and umpteen other or-
ganizations. A concrete example of cross-sectional data is given in Table 1.1
This table gives data on egg production and egg prices for the 50 states in
the union for 1990 and 1991. For each year the data on the 50 states are
cross-sectional data. Thus, in Table 1.1 we have two cross-sectional samples.

Just as time series data create their own special problems (because of
the stationarity issue), cross-sectional data too have their own problems,
specifically the problem of heterogeneity. From the data given in Table 1.1
we see that we have some states that produce huge amounts of eggs (e.g.,
Pennsylvania) and some that produce very little (e.g., Alaska). When we

TABLE 1.1 U.S. EGG PRODUCTION

State Y1 Y2 X1 X2 State Y1 Y2 X1 X2

AL 2,206 2,186 92.7 91.4 MT 172 164 68.0 66.0
AK 0.7 0.7 151.0 149.0 NE 1,202 1,400 50.3 48.9
AZ 73 74 61.0 56.0 NV 2.2 1.8 53.9 52.7
AR 3,620 3,737 86.3 91.8 NH 43 49 109.0 104.0
CA 7,472 7,444 63.4 58.4 NJ 442 491 85.0 83.0
CO 788 873 77.8 73.0 NM 283 302 74.0 70.0
CT 1,029 948 106.0 104.0 NY 975 987 68.1 64.0
DE 168 164 117.0 113.0 NC 3,033 3,045 82.8 78.7
FL 2,586 2,537 62.0 57.2 ND 51 45 55.2 48.0
GA 4,302 4,301 80.6 80.8 OH 4,667 4,637 59.1 54.7
HI 227.5 224.5 85.0 85.5 OK 869 830 101.0 100.0
ID 187 203 79.1 72.9 OR 652 686 77.0 74.6
IL 793 809 65.0 70.5 PA 4,976 5,130 61.0 52.0
IN 5,445 5,290 62.7 60.1 RI 53 50 102.0 99.0
IA 2,151 2,247 56.5 53.0 SC 1,422 1,420 70.1 65.9
KS 404 389 54.5 47.8 SD 435 602 48.0 45.8
KY 412 483 67.7 73.5 TN 277 279 71.0 80.7
LA 273 254 115.0 115.0 TX 3,317 3,356 76.7 72.6
ME 1,069 1,070 101.0 97.0 UT 456 486 64.0 59.0
MD 885 898 76.6 75.4 VT 31 30 106.0 102.0
MA 235 237 105.0 102.0 VA 943 988 86.3 81.2
MI 1,406 1,396 58.0 53.8 WA 1,287 1,313 74.1 71.5
MN 2,499 2,697 57.7 54.0 WV 136 174 104.0 109.0
MS 1,434 1,468 87.8 86.7 WI 910 873 60.1 54.0
MO 1,580 1,622 55.4 51.5 WY 1.7 1.7 83.0 83.0

Note: Y1 = eggs produced in 1990 (millions)
Y2 = eggs produced in 1991 (millions)
X1 = price per dozen (cents) in 1990
X2 = price per dozen (cents) in 1991

Source: World Almanac, 1993, p. 119. The data are from the Economic Research Service, U.S. Department
of Agriculture.
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FIGURE 1.6 Relationship between eggs produced
and prices, 1990.

include such heterogeneous units in a statistical analysis, the size or scale
effect must be taken into account so as not to mix apples with oranges. To
see this clearly, we plot in Figure 1.6 the data on eggs produced and their
prices in 50 states for the year 1990. This figure shows how widely scattered
the observations are. In Chapter 11 we will see how the scale effect can be
an important factor in assessing relationships among economic variables.

Pooled Data In pooled, or combined, data are elements of both time
series and cross-section data. The data in Table 1.1 are an example of pooled
data. For each year we have 50 cross-sectional observations and for each
state we have two time series observations on prices and output of eggs, a
total of 100 pooled (or combined) observations. Likewise, the data given in
exercise 1.1 are pooled data in that the Consumer Price Index (CPI) for each
country for 1973–1997 is time series data, whereas the data on the CPI for
the seven countries for a single year are cross-sectional data. In the pooled
data we have 175 observations—25 annual observations for each of the
seven countries.

Panel, Longitudinal, or Micropanel Data This is a special type of
pooled data in which the same cross-sectional unit (say, a family or a firm)
is surveyed over time. For example, the U.S. Department of Commerce car-
ries out a census of housing at periodic intervals. At each periodic survey the
same household (or the people living at the same address) is interviewed to
find out if there has been any change in the housing and financial conditions
of that household since the last survey. By interviewing the same household
periodically, the panel data provides very useful information on the dynam-
ics of household behavior, as we shall see in Chapter 16.
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12For an illuminating account, see Albert T. Somers, The U.S. Economy Demystified: What
the Major Economic Statistics Mean and their Significance for Business, D.C. Heath, Lexington,
Mass., 1985.

13In the social sciences too sometimes one can have a controlled experiment. An example is
given in exercise 1.6.

14For a critical review, see O. Morgenstern, The Accuracy of Economic Observations, 2d ed.,
Princeton University Press, Princeton, N.J., 1963.

The Sources of Data12

The data used in empirical analysis may be collected by a governmental
agency (e.g., the Department of Commerce), an international agency (e.g., the
International Monetary Fund (IMF) or the World Bank), a private organiza-
tion (e.g., the Standard & Poor’s Corporation), or an individual. Literally, there
are thousands of such agencies collecting data for one purpose or another.

The Internet The Internet has literally revolutionized data gathering. If
you just “surf the net” with a keyword (e.g., exchange rates), you will be
swamped with all kinds of data sources. In Appendix E we provide some of
the frequently visited web sites that provide economic and financial data of
all sorts. Most of the data can be downloaded without much cost. You may
want to bookmark the various web sites that might provide you with useful
economic data.

The data collected by various agencies may be experimental or nonex-
perimental. In experimental data, often collected in the natural sciences,
the investigator may want to collect data while holding certain factors con-
stant in order to assess the impact of some factors on a given phenomenon.
For instance, in assessing the impact of obesity on blood pressure, the re-
searcher would want to collect data while holding constant the eating, smok-
ing, and drinking habits of the people in order to minimize the influence of
these variables on blood pressure.

In the social sciences, the data that one generally encounters are nonex-
perimental in nature, that is, not subject to the control of the researcher.13 For
example, the data on GNP, unemployment, stock prices, etc., are not directly
under the control of the investigator. As we shall see, this lack of control often
creates special problems for the researcher in pinning down the exact cause
or causes affecting a particular situation. For example, is it the money supply
that determines the (nominal) GDP or is it the other way round?

The Accuracy of Data14

Although plenty of data are available for economic research, the quality of
the data is often not that good. There are several reasons for that. First, as
noted, most social science data are nonexperimental in nature. Therefore,
there is the possibility of observational errors, either of omission or com-
mission. Second, even in experimentally collected data errors of measure-
ment arise from approximations and roundoffs. Third, in questionnaire-type
surveys, the problem of nonresponse can be serious; a researcher is lucky to
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get a 40 percent response to a questionnaire. Analysis based on such partial
response may not truly reflect the behavior of the 60 percent who did not
respond, thereby leading to what is known as (sample) selectivity bias. Then
there is the further problem that those who respond to the questionnaire
may not answer all the questions, especially questions of financially sensi-
tive nature, thus leading to additional selectivity bias. Fourth, the sampling
methods used in obtaining the data may vary so widely that it is often diffi-
cult to compare the results obtained from the various samples. Fifth, eco-
nomic data are generally available at a highly aggregate level. For exam-
ple, most macrodata (e.g., GNP, employment, inflation, unemployment) are
available for the economy as a whole or at the most for some broad geo-
graphical regions. Such highly aggregated data may not tell us much about
the individual or microunits that may be the ultimate object of study. Sixth,
because of confidentiality, certain data can be published only in highly
aggregate form. The IRS, for example, is not allowed by law to disclose data
on individual tax returns; it can only release some broad summary data.
Therefore, if one wants to find out how much individuals with a certain level
of income spent on health care, one cannot do that analysis except at a very
highly aggregate level. But such macroanalysis often fails to reveal the
dynamics of the behavior of the microunits. Similarly, the Department of
Commerce, which conducts the census of business every 5 years, is not
allowed to disclose information on production, employment, energy con-
sumption, research and development expenditure, etc., at the firm level. It is
therefore difficult to study the interfirm differences on these items.

Because of all these and many other problems, the researcher should
always keep in mind that the results of research are only as good as the
quality of the data. Therefore, if in given situations researchers find that the
results of the research are “unsatisfactory,” the cause may be not that they
used the wrong model but that the quality of the data was poor. Unfortu-
nately, because of the nonexperimental nature of the data used in most social
science studies, researchers very often have no choice but to depend on the
available data. But they should always keep in mind that the data used may
not be the best and should try not to be too dogmatic about the results ob-
tained from a given study, especially when the quality of the data is suspect.

A Note on the Measurement Scales of Variables15

The variables that we will generally encounter fall into four broad cate-
gories: ratio scale, interval scale, ordinal scale, and nominal scale. It is im-
portant that we understand each.

Ratio Scale For a variable X, taking two values, X1 and X2, the ratio
X1/X2 and the distance (X2 −X1) are meaningful quantities. Also, there is a

15The following discussion relies heavily on Aris Spanos, Probability Theory and Statistical
Inference: Econometric Modeling with Observational Data, Cambridge University Press, New
York, 1999, p. 24.
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natural ordering (ascending or descending) of the values along the scale.
Therefore, comparisons such as X2 ≤ X1 or X2 ≥ X1 are meaningful. Most
economic variables belong to this category. Thus, it is meaningful to ask
how big is this year’s GDP compared with the previous year’s GDP.

Interval Scale An interval scale variable satisfies the last two properties
of the ratio scale variable but not the first. Thus, the distance between two
time periods, say (2000–1995) is meaningful, but not the ratio of two time
periods (2000/1995).

Ordinal Scale A variable belongs to this category only if it satisfies the
third property of the ratio scale (i.e., natural ordering). Examples are grad-
ing systems (A, B, C grades) or income class (upper, middle, lower). For
these variables the ordering exists but the distances between the categories
cannot be quantified. Students of economics will recall the indifference
curves between two goods, each higher indifference curve indicating higher
level of utility, but one cannot quantify by how much one indifference curve
is higher than the others.

Nominal Scale Variables in this category have none of the features of
the ratio scale variables. Variables such as gender (male, female) and mari-
tal status (married, unmarried, divorced, separated) simply denote cate-
gories. Question: What is the reason why such variables cannot be expressed
on the ratio, interval, or ordinal scales?

As we shall see, econometric techniques that may be suitable for ratio
scale variables may not be suitable for nominal scale variables. Therefore, it
is important to bear in mind the distinctions among the four types of mea-
surement scales discussed above.

1.8 SUMMARY AND CONCLUSIONS

1. The key idea behind regression analysis is the statistical dependence
of one variable, the dependent variable, on one or more other variables, the
explanatory variables.

2. The objective of such analysis is to estimate and/or predict the mean
or average value of the dependent variable on the basis of the known or fixed
values of the explanatory variables.

3. In practice the success of regression analysis depends on the avail-
ability of the appropriate data. This chapter discussed the nature, sources,
and limitations of the data that are generally available for research, espe-
cially in the social sciences.

4. In any research, the researcher should clearly state the sources of the
data used in the analysis, their definitions, their methods of collection, and
any gaps or omissions in the data as well as any revisions in the data. Keep
in mind that the macroeconomic data published by the government are
often revised.
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16Subtract from the current year’s CPI the CPI from the previous year, divide the differ-
ence by the previous year’s CPI, and multiply the result by 100. Thus, the inflation rate for
Canada for 1974 is [(45.2 −40.8)/40.8] × 100 = 10.78% (approx.).

5. Since the reader may not have the time, energy, or resources to track
down the data, the reader has the right to presume that the data used by the
researcher are properly gathered and that the computations and analysis
are correct.

EXERCISES
1.1. Table 1.2 gives data on the Consumer Price Index (CPI) for seven industri-

alized countries with 1982–1984 = 100 as the base of the index.
a. From the given data, compute the inflation rate for each country.16

b. Plot the inflation rate for each country against time (i.e., use the hori-
zontal axis for time and the vertical axis for the inflation rate.)

c. What broad conclusions can you draw about the inflation experience in
the seven countries?

d. Which country’s inflation rate seems to be most variable? Can you offer
any explanation?

TABLE 1.2 CPI IN SEVEN INDUSTRIAL COUNTRIES, 1973–1997 (1982−1984 = 100)

Year Canada France Germany Italy Japan U.K. U.S.

1973 40.80000 34.60000 62.80000 20.60000 47.90000 27.90000 44.40000
1974 45.20000 39.30000 67.10000 24.60000 59.00000 32.30000 49.30000
1975 50.10000 43.90000 71.10000 28.80000 65.90000 40.20000 53.80000
1976 53.90000 48.10000 74.20000 33.60000 72.20000 46.80000 56.90000
1977 58.10000 52.70000 76.90000 40.10000 78.10000 54.20000 60.60000
1978 63.30000 57.50000 79.00000 45.10000 81.40000 58.70000 65.20000
1979 69.20000 63.60000 82.20000 52.10000 84.40000 66.60000 72.60000
1980 76.10000 72.30000 86.70000 63.20000 90.90000 78.50000 82.40000
1981 85.60000 81.90000 92.20000 75.40000 95.30000 87.90000 90.90000
1982 94.90000 91.70000 97.10000 87.70000 98.10000 95.40000 96.50000
1983 100.4000 100.4000 100.3000 100.8000 99.80000 99.80000 99.60000
1984 104.7000 108.1000 102.7000 111.5000 102.1000 104.8000 103.9000
1985 109.0000 114.4000 104.8000 121.1000 104.1000 111.1000 107.6000
1986 113.5000 117.3000 104.7000 128.5000 104.8000 114.9000 109.6000
1987 118.4000 121.1000 104.9000 134.4000 104.8000 119.7000 113.6000
1988 123.2000 124.4000 106.3000 141.1000 105.6000 125.6000 118.3000
1989 129.3000 128.7000 109.2000 150.4000 108.1000 135.3000 124.0000
1990 135.5000 133.0000 112.2000 159.6000 111.4000 148.2000 130.7000
1991 143.1000 137.2000 116.3000 169.8000 115.0000 156.9000 136.2000
1992 145.3000 140.5000 122.1000 178.8000 116.9000 162.7000 140.3000
1993 147.9000 143.5000 127.6000 186.4000 118.4000 165.3000 144.5000
1994 148.2000 145.8000 131.1000 193.7000 119.3000 169.4000 148.2000
1995 151.4000 148.4000 133.5000 204.1000 119.1000 175.1000 152.4000
1996 153.8000 151.4000 135.5000 212.0000 119.3000 179.4000 156.9000
1997 156.3000 153.2000 137.8000 215.7000 121.3000 185.0000 160.5000
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1.2. a. Plot the inflation rate of Canada, France, Germany, Italy, Japan, and the
United Kingdom against the United States inflation rate.

b. Comment generally about the behavior of the inflation rate in the six
countries vis-à-vis the U.S. inflation rate.

c. If you find that the six countries’ inflation rates move in the same direc-
tion as the U.S. inflation rate, would that suggest that U.S. inflation
“causes” inflation in the other countries? Why or why not?

1.3. Table 1.3 gives the foreign exchange rates for seven industrialized countries
for years 1977–1998. Except for the United Kingdom, the exchange rate is
defined as the units of foreign currency for one U.S. dollar; for the United
Kingdom, it is defined as the number of U.S. dollars for one U.K. pound.
a. Plot these exchange rates against time and comment on the general

behavior of the exchange rates over the given time period.
b. The dollar is said to appreciate if it can buy more units of a foreign

currency. Contrarily, it is said to depreciate if it buys fewer units of a
foreign currency. Over the time period 1977–1998, what has been the
general behavior of the U.S. dollar? Incidentally, look up any textbook
on macroeconomics or international economics to find out what factors
determine the appreciation or depreciation of a currency.

1.4. The data behind the M1 money supply in Figure 1.5 are given in Table 1.4.
Can you give reasons why the money supply has been increasing over the
time period shown in the table?

TABLE 1.3 EXCHANGE RATES FOR SEVEN COUNTRIES: 1977–1998

Year Canada France Germany Japan Sweden Switzerland U.K.

1977 1.063300 4.916100 2.323600 268.6200 4.480200 2.406500 1.744900
1978 1.140500 4.509100 2.009700 210.3900 4.520700 1.790700 1.918400
1979 1.171300 4.256700 1.834300 219.0200 4.289300 1.664400 2.122400
1980 1.169300 4.225100 1.817500 226.6300 4.231000 1.677200 2.324600
1981 1.199000 5.439700 2.263200 220.6300 5.066000 1.967500 2.024300
1982 1.234400 6.579400 2.428100 249.0600 6.283900 2.032700 1.748000
1983 1.232500 7.620400 2.553900 237.5500 7.671800 2.100700 1.515900
1984 1.295200 8.735600 2.845500 237.4600 8.270800 2.350000 1.336800
1985 1.365900 8.980000 2.942000 238.4700 8.603200 2.455200 1.297400
1986 1.389600 6.925700 2.170500 168.3500 7.127300 1.797900 1.467700
1987 1.325900 6.012200 1.798100 144.6000 6.346900 1.491800 1.639800
1988 1.230600 5.959500 1.757000 128.1700 6.137000 1.464300 1.781300
1989 1.184200 6.380200 1.880800 138.0700 6.455900 1.636900 1.638200
1990 1.166800 5.446700 1.616600 145.0000 5.923100 1.390100 1.784100
1991 1.146000 5.646800 1.661000 134.5900 6.052100 1.435600 1.767400
1992 1.208500 5.293500 1.561800 126.7800 5.825800 1.406400 1.766300
1993 1.290200 5.666900 1.654500 111.0800 7.795600 1.478100 1.501600
1994 1.366400 5.545900 1.621600 102.1800 7.716100 1.366700 1.531900
1995 1.372500 4.986400 1.432100 93.96000 7.140600 1.181200 1.578500
1996 1.363800 5.115800 1.504900 108.7800 6.708200 1.236100 1.560700
1997 1.384900 5.839300 1.734800 121.0600 7.644600 1.451400 1.637600
1998 1.483600 5.899500 1.759700 130.9900 7.952200 1.450600 1.657300

Source: Economic Report of the President, January 2000 and January 2001.
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TABLE 1.4 SEASONALLY ADJUSTED M1 SUPPLY: 1959:01–1999:09 (BILLIONS OF DOLLARS)

1959:01 138.8900 139.3900 139.7400 139.6900 140.6800 141.1700
1959:07 141.7000 141.9000 141.0100 140.4700 140.3800 139.9500
1960:01 139.9800 139.8700 139.7500 139.5600 139.6100 139.5800
1960:07 140.1800 141.3100 141.1800 140.9200 140.8600 140.6900
1961:01 141.0600 141.6000 141.8700 142.1300 142.6600 142.8800
1961:07 142.9200 143.4900 143.7800 144.1400 144.7600 145.2000
1962:01 145.2400 145.6600 145.9600 146.4000 146.8400 146.5800
1962:07 146.4600 146.5700 146.3000 146.7100 147.2900 147.8200
1963:01 148.2600 148.9000 149.1700 149.7000 150.3900 150.4300
1963:07 151.3400 151.7800 151.9800 152.5500 153.6500 153.2900
1964:01 153.7400 154.3100 154.4800 154.7700 155.3300 155.6200
1964:07 156.8000 157.8200 158.7500 159.2400 159.9600 160.3000
1965:01 160.7100 160.9400 161.4700 162.0300 161.7000 162.1900
1965:07 163.0500 163.6800 164.8500 165.9700 166.7100 167.8500
1966:01 169.0800 169.6200 170.5100 171.8100 171.3300 171.5700
1966:07 170.3100 170.8100 171.9700 171.1600 171.3800 172.0300
1967:01 171.8600 172.9900 174.8100 174.1700 175.6800 177.0200
1967:07 178.1300 179.7100 180.6800 181.6400 182.3800 183.2600
1968:01 184.3300 184.7100 185.4700 186.6000 187.9900 189.4200
1968:07 190.4900 191.8400 192.7400 194.0200 196.0200 197.4100
1969:01 198.6900 199.3500 200.0200 200.7100 200.8100 201.2700
1969:07 201.6600 201.7300 202.1000 202.9000 203.5700 203.8800
1970:01 206.2200 205.0000 205.7500 206.7200 207.2200 207.5400
1970:07 207.9800 209.9300 211.8000 212.8800 213.6600 214.4100
1971:01 215.5400 217.4200 218.7700 220.0000 222.0200 223.4500
1971:07 224.8500 225.5800 226.4700 227.1600 227.7600 228.3200
1972:01 230.0900 232.3200 234.3000 235.5800 235.8900 236.6200
1972:07 238.7900 240.9300 243.1800 245.0200 246.4100 249.2500
1973:01 251.4700 252.1500 251.6700 252.7400 254.8900 256.6900
1973:07 257.5400 257.7600 257.8600 259.0400 260.9800 262.8800
1974:01 263.7600 265.3100 266.6800 267.2000 267.5600 268.4400
1974:07 269.2700 270.1200 271.0500 272.3500 273.7100 274.2000
1975:01 273.9000 275.0000 276.4200 276.1700 279.2000 282.4300
1975:07 283.6800 284.1500 285.6900 285.3900 286.8300 287.0700
1976:01 288.4200 290.7600 292.7000 294.6600 295.9300 296.1600
1976:07 297.2000 299.0500 299.6700 302.0400 303.5900 306.2500
1977:01 308.2600 311.5400 313.9400 316.0200 317.1900 318.7100
1977:07 320.1900 322.2700 324.4800 326.4000 328.6400 330.8700
1978:01 334.4000 335.3000 336.9600 339.9200 344.8600 346.8000
1978:07 347.6300 349.6600 352.2600 353.3500 355.4100 357.2800
1979:01 358.6000 359.9100 362.4500 368.0500 369.5900 373.3400
1979:07 377.2100 378.8200 379.2800 380.8700 380.8100 381.7700
1980:01 385.8500 389.7000 388.1300 383.4400 384.6000 389.4600
1980:07 394.9100 400.0600 405.3600 409.0600 410.3700 408.0600
1981:01 410.8300 414.3800 418.6900 427.0600 424.4300 425.5000
1981:07 427.9000 427.8500 427.4600 428.4500 430.8800 436.1700
1982:01 442.1300 441.4900 442.3700 446.7800 446.5300 447.8900
1982:07 449.0900 452.4900 457.5000 464.5700 471.1200 474.3000
1983:01 476.6800 483.8500 490.1800 492.7700 499.7800 504.3500
1983:07 508.9600 511.6000 513.4100 517.2100 518.5300 520.7900

(Continued )



Gujarati: Basic 
Econometrics, Fourth 
Edition

I. Single−Equation 
Regression Models

1. The Nature of 
Regression Analysis

© The McGraw−Hill 
Companies, 2004

CHAPTER ONE: THE NATURE OF REGRESSION ANALYSIS 35

TABLE 1.4 (Continued)

1984:01 524.4000 526.9900 530.7800 534.0300 536.5900 540.5400
1984:07 542.1300 542.3900 543.8600 543.8700 547.3200 551.1900
1985:01 555.6600 562.4800 565.7400 569.5500 575.0700 583.1700
1985:07 590.8200 598.0600 604.4700 607.9100 611.8300 619.3600
1986:01 620.4000 624.1400 632.8100 640.3500 652.0100 661.5200
1986:07 672.2000 680.7700 688.5100 695.2600 705.2400 724.2800
1987:01 729.3400 729.8400 733.0100 743.3900 746.0000 743.7200
1987:07 744.9600 746.9600 748.6600 756.5000 752.8300 749.6800
1988:01 755.5500 757.0700 761.1800 767.5700 771.6800 779.1000
1988:07 783.4000 785.0800 784.8200 783.6300 784.4600 786.2600
1989:01 784.9200 783.4000 782.7400 778.8200 774.7900 774.2200
1989:07 779.7100 781.1400 782.2000 787.0500 787.9500 792.5700
1990:01 794.9300 797.6500 801.2500 806.2400 804.3600 810.3300
1990:07 811.8000 817.8500 821.8300 820.3000 822.0600 824.5600
1991:01 826.7300 832.4000 838.6200 842.7300 848.9600 858.3300
1991:07 862.9500 868.6500 871.5600 878.4000 887.9500 896.7000
1992:01 910.4900 925.1300 936.0000 943.8900 950.7800 954.7100
1992:07 964.6000 975.7100 988.8400 1004.340 1016.040 1024.450
1993:01 1030.900 1033.150 1037.990 1047.470 1066.220 1075.610
1993:07 1085.880 1095.560 1105.430 1113.800 1123.900 1129.310
1994:01 1132.200 1136.130 1139.910 1141.420 1142.850 1145.650
1994:07 1151.490 1151.390 1152.440 1150.410 1150.440 1149.750
1995:01 1150.640 1146.740 1146.520 1149.480 1144.650 1144.240
1995:07 1146.500 1146.100 1142.270 1136.430 1133.550 1126.730
1996:01 1122.580 1117.530 1122.590 1124.520 1116.300 1115.470
1996:07 1112.340 1102.180 1095.610 1082.560 1080.490 1081.340
1997:01 1080.520 1076.200 1072.420 1067.450 1063.370 1065.990
1997:07 1067.570 1072.080 1064.820 1062.060 1067.530 1074.870
1998:01 1073.810 1076.020 1080.650 1082.090 1078.170 1077.780
1998:07 1075.370 1072.210 1074.650 1080.400 1088.960 1093.350
1999:01 1091.000 1092.650 1102.010 1108.400 1104.750 1101.110
1999:07 1099.530 1102.400 1093.460

Source: Board of Governors, Federal Reserve Bank, USA.

1.5. Suppose you were to develop an economic model of criminal activities, say,
the hours spent in criminal activities (e.g., selling illegal drugs). What vari-
ables would you consider in developing such a model? See if your model
matches the one developed by the Nobel laureate economist Gary Becker.17

1.6. Controlled experiments in economics: On April 7, 2000, President Clinton
signed into law a bill passed by both Houses of the U.S. Congress that lifted
earnings limitations on Social Security recipients. Until then, recipients
between the ages of 65 and 69 who earned more than $17,000 a year would
lose 1 dollar’s worth of Social Security benefit for every 3 dollars of income
earned in excess of $17,000. How would you devise a study to assess the
impact of this change in the law? Note: There was no income limitation for
recipients over the age of 70 under the old law.

17G. S. Becker, “Crime and Punishment: An Economic Approach,” Journal of Political Econ-
omy, vol. 76, 1968, pp. 169–217.
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1.7. The data presented in Table 1.5 was published in the March 1, 1984 issue
of the Wall Street Journal. It relates to the advertising budget (in millions of
dollars) of 21 firms for 1983 and millions of impressions retained per week
by the viewers of the products of these firms. The data are based on a sur-
vey of 4000 adults in which users of the products were asked to cite a com-
mercial they had seen for the product category in the past week.
a. Plot impressions on the vertical axis and advertising expenditure on the

horizontal axis.
b. What can you say about the nature of the relationship between the two

variables?
c. Looking at your graph, do you think it pays to advertise? Think about all

those commercials shown on Super Bowl Sunday or during the World
Series.

Note: We will explore further the data given in Table 1.5 in subsequent
chapters.

TABLE 1.5 IMPACT OF ADVERTISING EXPENDITURE

Impressions, Expenditure,
Firm millions millions of 1983 dollars

1. Miller Lite 32.1 50.1
2. Pepsi 99.6 74.1
3. Stroh’s 11.7 19.3
4. Fed’l Express 21.9 22.9
5. Burger King 60.8 82.4
6. Coca Cola 78.6 40.1
7. McDonald’s 92.4 185.9
8. MCl 50.7 26.9
9. Diet Cola 21.4 20.4

10. Ford 40.1 166.2
11. Levi’s 40.8 27.0
12. Bud Lite 10.4 45.6
13. ATT/Bell 88.9 154.9
14. Calvin Klein 12.0 5.0
15. Wendy’s 29.2 49.7
16. Polaroid 38.0 26.9
17. Shasta 10.0 5.7
18. Meow Mix 12.3 7.6
19. Oscar Meyer 23.4 9.2
20. Crest 71.1 32.4
21. Kibbles ‘N Bits 4.4 6.1

Source: http://lib.stat.cmu.edu/DASL/Datafiles/tvadsdat.html
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2
TWO-VARIABLE
REGRESSION ANALYSIS:
SOME BASIC IDEAS

In Chapter 1 we discussed the concept of regression in broad terms. In this
chapter we approach the subject somewhat formally. Specifically, this and
the following two chapters introduce the reader to the theory underlying
the simplest possible regression analysis, namely, the bivariate, or two-
variable, regression in which the dependent variable (the regressand) is re-
lated to a single explanatory variable (the regressor). This case is considered
first, not because of its practical adequacy, but because it presents the fun-
damental ideas of regression analysis as simply as possible and some of
these ideas can be illustrated with the aid of two-dimensional graphs. More-
over, as we shall see, the more general multiple regression analysis in which
the regressand is related to one or more regressors is in many ways a logical
extension of the two-variable case.

2.1 A HYPOTHETICAL EXAMPLE1

As noted in Section 1.2, regression analysis is largely concerned with esti-
mating and/or predicting the (population) mean value of the dependent
variable on the basis of the known or fixed values of the explanatory vari-
able(s).2 To understand this, consider the data given in Table 2.1. The data

1The reader whose statistical knowledge has become somewhat rusty may want to freshen
it up by reading the statistical appendix, App. A, before reading this chapter.

2The expected value, or expectation, or population mean of a random variable Y is denoted by
the symbol E(Y). On the other hand, the mean value computed from a sample of values from
the Y population is denoted as Ȳ, read as Y bar.
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TABLE 2.1 WEEKLY FAMILY INCOME X, $

X→
Y↓ 80 100 120 140 160 180 200 220 240 260

Weekly family 55 65 79 80 102 110 120 135 137 150
consumption 60 70 84 93 107 115 136 137 145 152
expenditure Y, $ 65 74 90 95 110 120 140 140 155 175

70 80 94 103 116 130 144 152 165 178
75 85 98 108 118 135 145 157 175 180
– 88 – 113 125 140 – 160 189 185
– – – 115 – – – 162 – 191

Total 325 462 445 707 678 750 685 1043 966 1211

Conditional 65 77 89 101 113 125 137 149 161 173
means of Y,
E (Y |X )

in the table refer to a total population of 60 families in a hypothetical com-
munity and their weekly income (X) and weekly consumption expenditure
(Y), both in dollars. The 60 families are divided into 10 income groups (from
$80 to $260) and the weekly expenditures of each family in the various
groups are as shown in the table. Therefore, we have 10 fixed values of X and
the corresponding Y values against each of the X values; so to speak, there
are 10 Y subpopulations.

There is considerable variation in weekly consumption expenditure in
each income group, which can be seen clearly from Figure 2.1. But the gen-
eral picture that one gets is that, despite the variability of weekly consump-
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FIGURE 2.1 Conditional distribution of expenditure for various levels of income (data of Table 2.1).
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TABLE 2.2 CONDITIONAL PROBABILITIES p(Y |Xi) FOR THE DATA OF TABLE 2.1

p(Y | Xi)
X→ 

↓ 80 100 120 140 160 180 200 220 240 260

Conditional 1
5

1
6

1
5

1
7

1
6

1
6

1
5

1
7

1
6

1
7

probabilities p(Y | Xi) 1
5
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5
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1
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1
6
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1
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1
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1
6

1
5

1
7

1
6

1
7

– 1
6 – 1

7
1
6

1
6 – 1

7
1
6

1
7

– – – 1
7 – – – 1

7 – 1
7

Conditional 65 77 89 101 113 125 137 149 161 173
means of Y

3As shown in App. A, in general the conditional and unconditional mean values are different.

tion expenditure within each income bracket, on the average, weekly con-
sumption expenditure increases as income increases. To see this clearly, in
Table 2.1 we have given the mean, or average, weekly consumption expen-
diture corresponding to each of the 10 levels of income. Thus, correspond-
ing to the weekly income level of $80, the mean consumption expenditure is
$65, while corresponding to the income level of $200, it is $137. In all we
have 10 mean values for the 10 subpopulations of Y. We call these mean val-
ues conditional expected values, as they depend on the given values of the
(conditioning) variable X. Symbolically, we denote them as E(Y | X), which
is read as the expected value of Y given the value of X (see also Table 2.2).

It is important to distinguish these conditional expected values from the
unconditional expected value of weekly consumption expenditure, E(Y).
If we add the weekly consumption expenditures for all the 60 families in
the population and divide this number by 60, we get the number $121.20
($7272/60), which is the unconditional mean, or expected, value of weekly
consumption expenditure, E(Y); it is unconditional in the sense that in ar-
riving at this number we have disregarded the income levels of the various
families.3 Obviously, the various conditional expected values of Y given in
Table 2.1 are different from the unconditional expected value of Y of
$121.20. When we ask the question, “What is the expected value of weekly
consumption expenditure of a family,” we get the answer $121.20 (the un-
conditional mean). But if we ask the question, “What is the expected value
of weekly consumption expenditure of a family whose monthly income is,
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FIGURE 2.2 Population regression line (data of Table 2.1).

4I am indebted to James Davidson on this perspective. See James Davidson, Econometric
Theory, Blackwell Publishers, Oxford, U.K., 2000, p. 11.

5In the present example the PRL is a straight line, but it could be a curve (see Figure 2.3).

say, $140,” we get the answer $101 (the conditional mean). To put it differ-
ently, if we ask the question, “What is the best (mean) prediction of weekly
expenditure of families with a weekly income of $140,” the answer would be
$101. Thus the knowledge of the income level may enable us to better pre-
dict the mean value of consumption expenditure than if we do not have that
knowledge.4 This probably is the essence of regression analysis, as we shall
discover throughout this text.

The dark circled points in Figure 2.1 show the conditional mean values of
Y against the various X values. If we join these conditional mean values, we
obtain what is known as the population regression line (PRL), or more
generally, the population regression curve.5 More simply, it is the regres-
sion of Y on X. The adjective “population” comes from the fact that we are
dealing in this example with the entire population of 60 families. Of course,
in reality a population may have many families.

Geometrically, then, a population regression curve is simply the locus of
the conditional means of the dependent variable for the fixed values of the ex-
planatory variable(s). More simply, it is the curve connecting the means of
the subpopulations of Y corresponding to the given values of the regressor
X. It can be depicted as in Figure 2.2.
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This figure shows that for each X (i.e., income level) there is a population
of Y values (weekly consumption expenditures) that are spread around the
(conditional) mean of those Y values. For simplicity, we are assuming that
these Y values are distributed symmetrically around their respective (condi-
tional) mean values. And the regression line (or curve) passes through these
(conditional) mean values.

With this background, the reader may find it instructive to reread the
definition of regression given in Section 1.2.

2.2 THE CONCEPT OF POPULATION REGRESSION 
FUNCTION (PRF)

From the preceding discussion and Figures. 2.1 and 2.2, it is clear that each
conditional mean E(Y | Xi) is a function of Xi, where Xi is a given value of X.
Symbolically,

E(Y | Xi) = f (Xi) (2.2.1)

where f (Xi) denotes some function of the explanatory variable X. In our
example, E(Y | Xi) is a linear function of Xi. Equation (2.2.1) is known as the
conditional expectation function (CEF) or population regression func-
tion (PRF) or population regression (PR) for short. It states merely that
the expected value of the distribution of Y given Xi is functionally related to Xi.
In simple terms, it tells how the mean or average response of Y varies with X.

What form does the function f (Xi) assume? This is an important ques-
tion because in real situations we do not have the entire population avail-
able for examination. The functional form of the PRF is therefore an empir-
ical question, although in specific cases theory may have something to say.
For example, an economist might posit that consumption expenditure is
linearly related to income. Therefore, as a first approximation or a working
hypothesis, we may assume that the PRF E(Y | Xi) is a linear function of Xi,
say, of the type

E(Y | Xi) = β1 + β2 Xi (2.2.2)

where β1 and β2 are unknown but fixed parameters known as the regression
coefficients; β1 and β2 are also known as intercept and slope coefficients,
respectively. Equation (2.2.1) itself is known as the linear population
regression function. Some alternative expressions used in the literature are
linear population regression model or simply linear population regression. In
the sequel, the terms regression, regression equation, and regression
model will be used synonymously.

In regression analysis our interest is in estimating the PRFs like (2.2.2),
that is, estimating the values of the unknowns β1 and β2 on the basis of ob-
servations on Y and X. This topic will be studied in detail in Chapter 3.
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6A function Y = f (X) is said to be linear in X if X appears with a power or index of 1 only
(that is, terms such as X2,

√
X, and so on, are excluded) and is not multiplied or divided by any

other variable (for example, X · Z or X/Z, where Z is another variable). If Y depends on X alone,
another way to state that Y is linearly related to X is that the rate of change of Y with respect to
X (i.e., the slope, or derivative, of Y with respect to X, dY/dX) is independent of the value of X.
Thus, if Y = 4X, dY/dX = 4, which is independent of the value of X. But if Y = 4X2, dY/dX =
8X, which is not independent of the value taken by X. Hence this function is not linear in X.

7A function is said to be linear in the parameter, say, β1, if β1 appears with a power of 1 only
and is not multiplied or divided by any other parameter (for example, β1β2, β2/β1, and so on).

2.3 THE MEANING OF THE TERM LINEAR

Since this text is concerned primarily with linear models like (2.2.2), it is es-
sential to know what the term linear really means, for it can be interpreted
in two different ways.

Linearity in the Variables

The first and perhaps more “natural” meaning of linearity is that the con-
ditional expectation of Y is a linear function of Xi, such as, for example,
(2.2.2).6 Geometrically, the regression curve in this case is a straight line.
In this interpretation, a regression function such as E(Y | Xi) = β1 + β2 X2

i
is not a linear function because the variable X appears with a power or
index of 2.

Linearity in the Parameters

The second interpretation of linearity is that the conditional expectation of
Y, E(Y | Xi), is a linear function of the parameters, the β ’s; it may or may not
be linear in the variable X.7 In this interpretation E(Y | Xi) = β1 + β2 X2

i is a
linear (in the parameter) regression model. To see this, let us suppose X
takes the value 3. Therefore, E(Y | X = 3) = β1 + 9β2, which is obviously lin-
ear in β1 and β2. All the models shown in Figure 2.3 are thus linear regres-
sion models, that is, models linear in the parameters.

Now consider the model E(Y | Xi) = β1 + β2
2 Xi . Now suppose X = 3; then

we obtain E(Y | Xi) = β1 + 3β2
2 , which is nonlinear in the parameter β2. The

preceding model is an example of a nonlinear (in the parameter) regres-
sion model. We will discuss such models in Chapter 14.

Of the two interpretations of linearity, linearity in the parameters is rele-
vant for the development of the regression theory to be presented shortly.
Therefore, from now on the term “linear” regression will always mean a regres-
sion that is linear in the parameters; the β ’s (that is, the parameters are raised
to the first power only). It may or may not be linear in the explanatory vari-
ables, the X’s. Schematically, we have Table 2.3. Thus, E(Y | Xi) = β1 + β2 Xi ,
which is linear both in the parameters and variable, is a LRM, and so is
E(Y | Xi) = β1 + β2 X2

i , which is linear in the parameters but nonlinear in
variable X.
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+Y = X +β1 β2 X2β3

+Y = X +β1 β2 X2β3 + X3β4
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X

+ Xβ1 β2Y = e

FIGURE 2.3 Linear-in-parameter functions.

TABLE 2.3 LINEAR REGRESSION MODELS

Model linear in parameters? Model linear in variables?

Yes No

Yes LRM LRM
No NLRM NLRM

Note: LRM = linear regression model
NLRM = nonlinear regression model

2.4 STOCHASTIC SPECIFICATION OF PRF

It is clear from Figure 2.1 that, as family income increases, family consump-
tion expenditure on the average increases, too. But what about the con-
sumption expenditure of an individual family in relation to its (fixed) level
of income? It is obvious from Table 2.1 and Figure 2.1 that an individual
family’s consumption expenditure does not necessarily increase as the income
level increases. For example, from Table 2.1 we observe that corresponding
to the income level of $100 there is one family whose consumption expen-
diture of $65 is less than the consumption expenditures of two families
whose weekly income is only $80. But notice that the average consumption
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expenditure of families with a weekly income of $100 is greater than the
average consumption expenditure of families with a weekly income of $80
($77 versus $65).

What, then, can we say about the relationship between an individual fam-
ily’s consumption expenditure and a given level of income? We see from Fig-
ure 2.1 that, given the income level of Xi , an individual family’s consump-
tion expenditure is clustered around the average consumption of all families
at that Xi , that is, around its conditional expectation. Therefore, we can ex-
press the deviation of an individual Yi around its expected value as follows:

ui = Yi − E(Y | Xi)

or

Yi = E(Y | Xi) + ui (2.4.1)

where the deviation ui is an unobservable random variable taking positive
or negative values. Technically, ui is known as the stochastic disturbance
or stochastic error term.

How do we interpret (2.4.1)? We can say that the expenditure of an indi-
vidual family, given its income level, can be expressed as the sum of two
components: (1) E(Y | Xi), which is simply the mean consumption expendi-
ture of all the families with the same level of income. This component is
known as the systematic, or deterministic, component, and (2) ui , which
is the random, or nonsystematic, component. We shall examine shortly the
nature of the stochastic disturbance term, but for the moment assume that
it is a surrogate or proxy for all the omitted or neglected variables that may
affect Y but are not (or cannot be) included in the regression model.

If E(Y | Xi) is assumed to be linear in Xi , as in (2.2.2), Eq. (2.4.1) may be
written as

Yi = E(Y | Xi) + ui

= β1 + β2 Xi + ui (2.4.2)

Equation (2.4.2) posits that the consumption expenditure of a family is
linearly related to its income plus the disturbance term. Thus, the individ-
ual consumption expenditures, given X = $80 (see Table 2.1), can be ex-
pressed as

Y1 = 55 = β1 + β2(80) + u1

Y2 = 60 = β1 + β2(80) + u2

Y3 = 65 = β1 + β2(80) + u3 (2.4.3)

Y4 = 70 = β1 + β2(80) + u4

Y5 = 75 = β1 + β2(80) + u5
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8See App. A for a brief discussion of the properties of the expectation operator E. Note that
E(Y | Xi), once the value of Xi is fixed, is a constant.

9As a matter of fact, in the method of least squares to be developed in Chap. 3, it is assumed
explicitly that E(ui | Xi) = 0. See Sec. 3.2.

Now if we take the expected value of (2.4.1) on both sides, we obtain

E(Yi | Xi) = E[E(Y | Xi)] + E(ui | Xi)

= E(Y | Xi) + E(ui | Xi) (2.4.4)

where use is made of the fact that the expected value of a constant is that
constant itself.8 Notice carefully that in (2.4.4) we have taken the condi-
tional expectation, conditional upon the given X’s.

Since E(Yi | Xi) is the same thing as E(Y | Xi), Eq. (2.4.4) implies that

E(ui | Xi) = 0 (2.4.5)

Thus, the assumption that the regression line passes through the condi-
tional means of Y (see Figure 2.2) implies that the conditional mean values
of ui (conditional upon the given X’s) are zero.

From the previous discussion, it is clear (2.2.2) and (2.4.2) are equivalent
forms if E(ui | Xi) = 0.9 But the stochastic specification (2.4.2) has the
advantage that it clearly shows that there are other variables besides income
that affect consumption expenditure and that an individual family’s con-
sumption expenditure cannot be fully explained only by the variable(s)
included in the regression model.

2.5 THE SIGNIFICANCE OF THE STOCHASTIC 
DISTURBANCE TERM

As noted in Section 2.4, the disturbance term ui is a surrogate for all those
variables that are omitted from the model but that collectively affect Y. The
obvious question is: Why not introduce these variables into the model ex-
plicitly? Stated otherwise, why not develop a multiple regression model
with as many variables as possible? The reasons are many.

1. Vagueness of theory: The theory, if any, determining the behavior of Y
may be, and often is, incomplete. We might know for certain that weekly
income X influences weekly consumption expenditure Y, but we might be
ignorant or unsure about the other variables affecting Y. Therefore, ui may
be used as a substitute for all the excluded or omitted variables from the
model.

2. Unavailability of data: Even if we know what some of the excluded
variables are and therefore consider a multiple regression rather than a
simple regression, we may not have quantitative information about these
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10A further difficulty is that variables such as sex, education, and religion are difficult to
quantify.

11Milton Friedman, A Theory of the Consumption Function, Princeton University Press,
Princeton, N.J., 1957.

12“That descriptions be kept as simple as possible until proved inadequate,” The World of
Mathematics, vol. 2, J. R. Newman (ed.), Simon & Schuster, New York, 1956, p. 1247, or, “Enti-
ties should not be multiplied beyond necessity,” Donald F. Morrison, Applied Linear Statistical
Methods, Prentice Hall, Englewood Cliffs, N.J., 1983, p. 58.

variables. It is a common experience in empirical analysis that the data we
would ideally like to have often are not available. For example, in principle
we could introduce family wealth as an explanatory variable in addition to
the income variable to explain family consumption expenditure. But unfor-
tunately, information on family wealth generally is not available. Therefore,
we may be forced to omit the wealth variable from our model despite its
great theoretical relevance in explaining consumption expenditure.

3. Core variables versus peripheral variables: Assume in our consumption-
income example that besides income X1, the number of children per family
X2, sex X3, religion X4, education X5, and geographical region X6 also affect
consumption expenditure. But it is quite possible that the joint influence of
all or some of these variables may be so small and at best nonsystematic or
random that as a practical matter and for cost considerations it does not pay
to introduce them into the model explicitly. One hopes that their combined
effect can be treated as a random variable ui.10

4. Intrinsic randomness in human behavior: Even if we succeed in intro-
ducing all the relevant variables into the model, there is bound to be some
“intrinsic” randomness in individual Y ’s that cannot be explained no matter
how hard we try. The disturbances, the u’s, may very well reflect this intrin-
sic randomness.

5. Poor proxy variables: Although the classical regression model (to be
developed in Chapter 3) assumes that the variables Y and X are measured
accurately, in practice the data may be plagued by errors of measurement.
Consider, for example, Milton Friedman’s well-known theory of the con-
sumption function.11 He regards permanent consumption (Y p) as a function
of permanent income (X p). But since data on these variables are not directly
observable, in practice we use proxy variables, such as current consumption
(Y) and current income (X), which can be observable. Since the observed Y
and X may not equal Y p and X p, there is the problem of errors of measure-
ment. The disturbance term u may in this case then also represent the errors
of measurement. As we will see in a later chapter, if there are such errors of
measurement, they can have serious implications for estimating the regres-
sion coefficients, the β ’s.

6. Principle of parsimony: Following Occam’s razor,12 we would like to
keep our regression model as simple as possible. If we can explain the be-
havior of Y “substantially” with two or three explanatory variables and if
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our theory is not strong enough to suggest what other variables might be
included, why introduce more variables? Let ui represent all other variables.
Of course, we should not exclude relevant and important variables just to
keep the regression model simple.

7. Wrong functional form: Even if we have theoretically correct vari-
ables explaining a phenomenon and even if we can obtain data on these
variables, very often we do not know the form of the functional relation-
ship between the regressand and the regressors. Is consumption expendi-
ture a linear (invariable) function of income or a nonlinear (invariable)
function? If it is the former, Yi = β1 + B2 Xi + ui is the proper functional re-
lationship between Y and X, but if it is the latter, Yi = β1 + β2 Xi + β3 X2

i + ui

may be the correct functional form. In two-variable models the functional
form of the relationship can often be judged from the scattergram. But in
a multiple regression model, it is not easy to determine the appropriate
functional form, for graphically we cannot visualize scattergrams in multi-
ple dimensions.

For all these reasons, the stochastic disturbances ui assume an extremely
critical role in regression analysis, which we will see as we progress.

2.6 THE SAMPLE REGRESSION FUNCTION (SRF)

By confining our discussion so far to the population of Y values correspond-
ing to the fixed X’s, we have deliberately avoided sampling considerations
(note that the data of Table 2.1 represent the population, not a sample). But
it is about time to face up to the sampling problems, for in most practical sit-
uations what we have is but a sample of Y values corresponding to some
fixed X’s. Therefore, our task now is to estimate the PRF on the basis of the
sample information.

As an illustration, pretend that the population of Table 2.1 was not known
to us and the only information we had was a randomly selected sample of Y
values for the fixed X’s as given in Table 2.4. Unlike Table 2.1, we now have
only one Y value corresponding to the given X’s; each Y (given Xi) in
Table 2.4 is chosen randomly from similar Y’s corresponding to the same Xi
from the population of Table 2.1.

The question is: From the sample of Table 2.4 can we predict the aver-
age weekly consumption expenditure Y in the population as a whole
corresponding to the chosen X’s? In other words, can we estimate the PRF
from the sample data? As the reader surely suspects, we may not be able to
estimate the PRF “accurately” because of sampling fluctuations. To see this,
suppose we draw another random sample from the population of Table 2.1,
as presented in Table 2.5.

Plotting the data of Tables 2.4 and 2.5, we obtain the scattergram given in
Figure 2.4. In the scattergram two sample regression lines are drawn so as
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to “fit” the scatters reasonably well: SRF1 is based on the first sample, and
SRF2 is based on the second sample. Which of the two regression lines rep-
resents the “true” population regression line? If we avoid the temptation of
looking at Figure 2.1, which purportedly represents the PR, there is no way
we can be absolutely sure that either of the regression lines shown in Fig-
ure 2.4 represents the true population regression line (or curve). The re-
gression lines in Figure 2.4 are known as the sample regression lines. Sup-

FIGURE 2.4 Regression lines based on two different samples.

TABLE 2.5
ANOTHER RANDOM SAMPLE FROM
THE POPULATION OF TABLE 2.1

Y X

55 80
88 100
90 120
80 140

118 160
120 180
145 200
135 220
145 240
175 260

TABLE 2.4
A RANDOM SAMPLE FROM THE
POPULATION OF TABLE 2.1

Y X

70 80
65 100
90 120
95 140

110 160
115 180
120 200
140 220
155 240
150 260
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13As noted in the Introduction, a hat above a variable will signify an estimator of the rele-
vant population value.

posedly they represent the population regression line, but because of sam-
pling fluctuations they are at best an approximation of the true PR. In gen-
eral, we would get N different SRFs for N different samples, and these SRFs
are not likely to be the same.

Now, analogously to the PRF that underlies the population regression
line, we can develop the concept of the sample regression function (SRF)
to represent the sample regression line. The sample counterpart of (2.2.2)
may be written as 

Ŷi = β̂1 + β̂2 Xi (2.6.1)

where Ŷ is read as “Y-hat’’ or “Y-cap’’
Ŷi = estimator of E(Y | Xi)
β̂1 = estimator of β1
β̂2 = estimator of β2

Note that an estimator, also known as a (sample) statistic, is simply a rule
or formula or method that tells how to estimate the population parameter
from the information provided by the sample at hand. A particular numerical
value obtained by the estimator in an application is known as an estimate.13

Now just as we expressed the PRF in two equivalent forms, (2.2.2) and
(2.4.2), we can express the SRF (2.6.1) in its stochastic form as follows:

Yi = β̂1 + β̂2 Xi + ûi (2.6.2)

where, in addition to the symbols already defined, ûi denotes the (sample)
residual term. Conceptually ûi is analogous to ui and can be regarded as
an estimate of ui . It is introduced in the SRF for the same reasons as ui was
introduced in the PRF.

To sum up, then, we find our primary objective in regression analysis is to
estimate the PRF

(2.4.2)

on the basis of the SRF

(2.6.2)

because more often than not our analysis is based upon a single sample
from some population. But because of sampling fluctuations our estimate of

Yi = β̂1 + β̂xi = ûi

Yi = β1 + β2 Xi + ui
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FIGURE 2.5 Sample and population regression lines.

the PRF based on the SRF is at best an approximate one. This approxima-
tion is shown diagrammatically in Figure 2.5.

For X = Xi , we have one (sample) observation Y = Yi . In terms of the
SRF, the observed Yi can be expressed as

Yi = Ŷi + ûi (2.6.3)

and in terms of the PRF, it can be expressed as

Yi = E(Y | Xi) + ui (2.6.4)

Now obviously in Figure 2.5 Ŷi overestimates the true E(Y | Xi) for the Xi

shown therein. By the same token, for any Xi to the left of the point A, the
SRF will underestimate the true PRF. But the reader can readily see that
such over- and underestimation is inevitable because of sampling fluctu-
ations.

The critical question now is: Granted that the SRF is but an approxima-
tion of the PRF, can we devise a rule or a method that will make this ap-
proximation as “close” as possible? In other words, how should the SRF be
constructed so that β̂1 is as “close” as possible to the true β1 and β̂2 is as
“close” as possible to the true β2 even though we will never know the true β1
and β2?
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14Ernst R. Berndt, The Practice of Econometrics: Classic and Contemporary, Addison Wesley,
Reading, Mass., 1991. Incidentally, this is an excellent book that the reader may want to read
to find out how econometricians go about doing research.

The answer to this question will occupy much of our attention in Chap-
ter 3. We note here that we can develop procedures that tell us how to
construct the SRF to mirror the PRF as faithfully as possible. It is fascinat-
ing to consider that this can be done even though we never actually deter-
mine the PRF itself.

2.7 AN ILLUSTRATIVE EXAMPLE

We conclude this chapter with an example. Table 2.6 gives data on the level
of education (measured by the number of years of schooling), the mean
hourly wages earned by people at each level of education, and the number
of people at the stated level of education. Ernst Berndt originally obtained
the data presented in the table, and he derived these data from the current
population survey conducted in May 1985.14 We will explore these data
(with additional explanatory variables) in Chapter 3 (Example 3.3, p. 91).

Plotting the (conditional) mean wage against education, we obtain the
picture in Figure 2.6. The regression curve in the figure shows how mean
wages vary with the level of education; they generally increase with the level
of education, a finding one should not find surprising. We will study in a
later chapter how variables besides education can also affect the mean
wage.

TABLE 2.6
MEAN HOURLY WAGE BY EDUCATION

Years of schooling Mean wage, $ Number of people

6 4.4567 3
7 5.7700 5
8 5.9787 15
9 7.3317 12

10 7.3182 17
11 6.5844 27
12 7.8182 218
13 7.8351 37
14 11.0223 56
15 10.6738 13
16 10.8361 70
17 13.6150 24
18 13.5310 31

Total 528

Source: Arthur S. Goldberger, Introductory Econometrics, Harvard
University Press, Cambridge, Mass., 1998, Table 1.1, p. 5 (adapted).
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FIGURE 2.6
Relationship between mean wages and
education.
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2.8 SUMMARY AND CONCLUSIONS

1. The key concept underlying regression analysis is the concept of
the conditional expectation function (CEF), or population regression
function (PRF). Our objective in regression analysis is to find out how the
average value of the dependent variable (or regressand) varies with the
given value of the explanatory variable (or regressor).

2. This book largely deals with linear PRFs, that is, regressions that are
linear in the parameters. They may or may not be linear in the regressand or
the regressors.

3. For empirical purposes, it is the stochastic PRF that matters. The
stochastic disturbance term ui plays a critical role in estimating the PRF.

4. The PRF is an idealized concept, since in practice one rarely has
access to the entire population of interest. Usually, one has a sample of ob-
servations from the population. Therefore, one uses the stochastic sample
regression function (SRF) to estimate the PRF. How this is actually ac-
complished is discussed in Chapter 3.

EXERCISES

Questions

2.1. What is the conditional expectation function or the population regression
function?

2.2. What is the difference between the population and sample regression
functions? Is this a distinction without difference?

2.3. What is the role of the stochastic error term ui in regression analysis? What
is the difference between the stochastic error term and the residual, ûi ?

2.4. Why do we need regression analysis? Why not simply use the mean value
of the regressand as its best value?

2.5. What do we mean by a linear regression model?
2.6. Determine whether the following models are linear in the parameters, or the

variables, or both. Which of these models are linear regression models?

Model Descriptive title

a. Yi = β1 + β2

(
1
Xi

)
+ ui Reciprocal

b. Yi = β1 + β2 ln Xi + ui Semilogarithmic
c. ln Yi = β1 + β2 Xi + ui Inverse semilogarithmic
d. ln Yi = ln β1 + β2 ln Xi + ui Logarithmic or double logarithmic

e. ln Yi = β1 − β2

(
1
Xi

)
+ ui Logarithmic reciprocal

Note: ln = natural log (i.e., log to the base e); ui is the stochastic distur-
bance term. We will study these models in Chapter 6.

2.7. Are the following models linear regression models? Why or why not?
a. Yi = eβ1+β2 Xi+ui

b. Yi =
1

1 + eβ1+β2 Xi+ui



Gujarati: Basic 
Econometrics, Fourth 
Edition

I. Single−Equation 
Regression Models

2. Two−Variable 
Regression Analysis: Some 
Basic Ideas

© The McGraw−Hill 
Companies, 2004

CHAPTER TWO: TWO-VARIABLE REGRESSION ANALYSIS: SOME BASIC IDEAS 53

c. ln Yi = β1 + β2

(
1
Xi

)
+ ui

d. Yi = β1 + (0.75 − β1)e−β2(Xi−2) + ui

e. Yi = β1 + β3
2 Xi + ui

2.8. What is meant by an intrinsically linear regression model? If β2 in exer-
cise 2.7d were 0.8, would it be a linear or nonlinear regression model?

*2.9. Consider the following nonstochastic models (i.e., models without the sto-
chastic error term). Are they linear regression models? If not, is it possible,
by suitable algebraic manipulations, to convert them into linear models?

a. Yi =
1

β1 + β2 Xi

b. Yi =
Xi

β1 + β2 Xi

c. Yi =
1

1 + exp(−β1 − β2 Xi )
2.10. You are given the scattergram in Figure 2.7 along with the regression line.

What general conclusion do you draw from this diagram? Is the regres-
sion line sketched in the diagram a population regression line or the sam-
ple regression line?
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FIGURE 2.7 Growth rates of real manufacturing wages and exports. Data are for 50 developing countries during
1970–90.
Source: The World Bank, World Development Report 1995, p. 55. The original source is UNIDO data, World
Bank data.



Gujarati: Basic 
Econometrics, Fourth 
Edition

I. Single−Equation 
Regression Models

2. Two−Variable 
Regression Analysis: Some 
Basic Ideas

© The McGraw−Hill 
Companies, 2004

54 PART ONE: SINGLE-EQUATION REGRESSION MODELS

0

Abundant land;
less skilled workers

Scarce land;
more skilled workers

1 2 3 4 5 6 7 8 9 10 11 12

4

3

2

1

0

–1

M
or

e 
m

an
u

fa
ct

u
re

s
in

 e
xp

or
ts

M
or

e 
ra

w
 m

at
er

ia
ls

in
 e

xp
or

ts

–2

–3

–4

–5

–6

–7

Regional averages

East Asia and the Pacific

Latin-America and the Caribbean

South Asia

Industrial market economies Sub-Saharan Africa

FIGURE 2.8 Skill intensity of exports and human capital endowment. Data are for 126 industrial and developing
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manufactured to primary-products exports.
Source: World Bank, World Development Report 1995, p. 59. Original sources: Export data from United Nations
Statistical Office COMTRADE data base; education data from UNDP 1990; land data from the World Bank.

2.11. From the scattergram given in Figure 2.8, what general conclusions do
you draw? What is the economic theory that underlies this scattergram?
(Hint: Look up any international economics textbook and read up on the
Heckscher–Ohlin model of trade.)

2.12. What does the scattergram in Figure 2.9 reveal? On the basis of this dia-
gram, would you argue that minimum wage laws are good for economic
well-being?

2.13. Is the regression line shown in Figure I.3 of the Introduction the PRF or
the SRF? Why? How would you interpret the scatterpoints around the re-
gression line? Besides GDP, what other factors, or variables, might deter-
mine personal consumption expenditure?

Problems

2.14. You are given the data in Table 2.7 for the United States for years
1980–1996.
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FIGURE 2.9 The minimum wage and GNP per capita. The sample consists of 17 developing countries. Years
vary by country from 1988 to 1992. Data are in international prices.
Source: World Bank, World Development Report 1995, p. 75.

TABLE 2.7 LABOR FORCE PARTICIPATION DATA

Year CLFPRM1 CLFPRF2 UNRM3 UNRF4 AHE825 AHE6

1980 77.4 51.5 6.9 7.4 7.78 6.66
1981 77.0 52.1 7.4 7.9 7.69 7.25
1982 76.6 52.6 9.9 9.4 7.68 7.68
1983 76.4 53.9 9.9 9.2 7.79 8.02
1984 76.4 53.6 7.4 7.6 7.80 8.32
1985 76.3 54.5 7.0 7.4 7.77 8.57
1986 76.3 55.3 6.9 7.1 7.81 8.76
1987 76.2 56.0 6.2 6.2 7.73 8.98
1988 76.2 56.6 5.5 5.6 7.69 9.28
1989 76.4 57.4 5.2 5.4 7.64 9.66
1990 76.4 57.5 5.7 5.5 7.52 10.01
1991 75.8 57.4 7.2 6.4 7.45 10.32
1992 75.8 57.8 7.9 7.0 7.41 10.57
1993 75.4 57.9 7.2 6.6 7.39 10.83
1994 75.1 58.8 6.2 6.0 7.40 11.12
1995 75.0 58.9 5.6 5.6 7.40 11.44
1996 74.9 59.3 5.4 5.4 7.43 11.82

Source: Economic Report of the President, 1997. Table citations below refer to the source document.
1CLFPRM, Civilian labor force participation rate, male (%), Table B-37, p. 343.
2CLFPRF, Civilian labor force participation rate, female (%), Table B-37, p. 343.
3UNRM, Civilian unemployment rate, male (%) Table B-40, p. 346.
4UNRF, Civilian unemployment rate, female (%) Table B-40, p. 346.
5AHE82, Average hourly earnings (1982 dollars), Table B-45, p. 352.
6AHE, Average hourly earnings (current dollars), Table B-45, p. 352.
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TABLE 2.8 FOOD AND TOTAL EXPENDITURE (RUPEES)

Food Total Food Total
Observation expenditure expenditure Observation expenditure expenditure

1 217.0000 382.0000 29 390.0000 655.0000
2 196.0000 388.0000 30 385.0000 662.0000
3 303.0000 391.0000 31 470.0000 663.0000
4 270.0000 415.0000 32 322.0000 677.0000
5 325.0000 456.0000 33 540.0000 680.0000
6 260.0000 460.0000 34 433.0000 690.0000
7 300.0000 472.0000 35 295.0000 695.0000
8 325.0000 478.0000 36 340.0000 695.0000
9 336.0000 494.0000 37 500.0000 695.0000

10 345.0000 516.0000 38 450.0000 720.0000
11 325.0000 525.0000 39 415.0000 721.0000
12 362.0000 554.0000 40 540.0000 730.0000
13 315.0000 575.0000 41 360.0000 731.0000
14 355.0000 579.0000 42 450.0000 733.0000
15 325.0000 585.0000 43 395.0000 745.0000
16 370.0000 586.0000 44 430.0000 751.0000
17 390.0000 590.0000 45 332.0000 752.0000
18 420.0000 608.0000 46 397.0000 752.0000
19 410.0000 610.0000 47 446.0000 769.0000
20 383.0000 616.0000 48 480.0000 773.0000
21 315.0000 618.0000 49 352.0000 773.0000
22 267.0000 623.0000 50 410.0000 775.0000
23 420.0000 627.0000 51 380.0000 785.0000
24 300.0000 630.0000 52 610.0000 788.0000
25 410.0000 635.0000 53 530.0000 790.0000
26 220.0000 640.0000 54 360.0000 795.0000
27 403.0000 648.0000 55 305.0000 801.0000
28 350.0000 650.0000

Source: Chandan Mukherjee, Howard White, and Marc Wuyts, Econometrics and Data Analysis for
Developing Countries, Routledge, New York, 1998, p. 457.

a. Plot the male civilian labor force participation rate against male civil-
ian unemployment rate. Eyeball a regression line through the scatter
points. A priori, what is the expected relationship between the two and
what is the underlying economic theory? Does the scattergram support
the theory?

b. Repeat part a for females.
c. Now plot both the male and female labor participation rates against

average hourly earnings (in 1982 dollars). (You may use separate dia-
grams.) Now what do you find? And how would you rationalize your
finding?

d. Can you plot the labor force participation rate against the unemploy-
ment rate and the average hourly earnings simultaneously? If not, how
would you verbalize the relationship among the three variables?

2.15. Table 2.8 gives data on expenditure on food and total expenditure, mea-
sured in rupees, for a sample of 55 rural households from India. (In early
2000, a U.S. dollar was about 40 Indian rupees.)
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a. Plot the data, using the vertical axis for expenditure on food and the
horizontal axis for total expenditure, and sketch a regression line
through the scatterpoints.

b. What broad conclusions can you draw from this example?
c. A priori, would you expect expenditure on food to increase linearly as

total expenditure increases regardless of the level of total expenditure?
Why or why not? You can use total expenditure as a proxy for total
income.

2.16. Table 2.9 gives data on mean Scholastic Aptitude Test (SAT) scores for
college-bound seniors for 1967–1990.
a. Use the horizontal axis for years and the vertical axis for SAT scores to

plot the verbal and math scores for males and females separately.
b. What general conclusions can you draw?
c. Knowing the verbal scores of males and females, how would you go

about predicting their math scores?
d. Plot the female verbal SAT score against the male verbal SAT score.

Sketch a regression line through the scatterpoints. What do you
observe?

TABLE 2.9 MEAN SCHOLASTIC APTITUDE TEST SCORES FOR COLLEGE-BOUND SENIORS,
1967–1990*

Verbal Math

Year Males Females Total Males Females Total

1967 463 468 466 514 467 492
1968 464 466 466 512 470 492
1969 459 466 463 513 470 493
1970 459 461 460 509 465 488
1971 454 457 455 507 466 488
1972 454 452 453 505 461 484
1973 446 443 445 502 460 481
1974 447 442 444 501 459 480
1975 437 431 434 495 449 472
1976 433 430 431 497 446 472
1977 431 427 429 497 445 470
1978 433 425 429 494 444 468
1979 431 423 427 493 443 467
1980 428 420 424 491 443 466
1981 430 418 424 492 443 466
1982 431 421 426 493 443 467
1983 430 420 425 493 445 468
1984 433 420 426 495 449 471
1985 437 425 431 499 452 475
1986 437 426 431 501 451 475
1987 435 425 430 500 453 476
1988 435 422 428 498 455 476
1989 434 421 427 500 454 476
1990 429 419 424 499 455 476

*Data for 1967–1971 are estimates.
Source: The College Board. The New York Times, Aug. 28, 1990, p. B-5.
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As noted in Chapter 2, our first task is to estimate the population regression
function (PRF) on the basis of the sample regression function (SRF) as
accurately as possible. In Appendix A we have discussed two generally used
methods of estimation: (1) ordinary least squares (OLS) and (2) maxi-
mum likelihood (ML). By and large, it is the method of OLS that is used
extensively in regression analysis primarily because it is intuitively appeal-
ing and mathematically much simpler than the method of maximum likeli-
hood. Besides, as we will show later, in the linear regression context the two
methods generally give similar results.

3.1 THE METHOD OF ORDINARY LEAST SQUARES

The method of ordinary least squares is attributed to Carl Friedrich Gauss,
a German mathematician. Under certain assumptions (discussed in Sec-
tion 3.2), the method of least squares has some very attractive statistical
properties that have made it one of the most powerful and popular methods
of regression analysis. To understand this method, we first explain the least-
squares principle.

Recall the two-variable PRF:

Yi = β1 + β2 Xi + ui (2.4.2)

However, as we noted in Chapter 2, the PRF is not directly observable. We

3
TWO-VARIABLE
REGRESSION MODEL: THE
PROBLEM OF ESTIMATION
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SRF
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Yi = β β1 + 2Xi
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FIGURE 3.1 Least-squares criterion.

estimate it from the SRF:

Yi = β̂1 + β̂2 Xi + ûi (2.6.2)

= Ŷi + ûi (2.6.3)

where Ŷi is the estimated (conditional mean) value of Yi .
But how is the SRF itself determined? To see this, let us proceed as fol-

lows. First, express (2.6.3) as

ûi = Yi − Ŷi

= Yi − β̂1 − β̂2 Xi
(3.1.1)

which shows that the ûi (the residuals) are simply the differences between
the actual and estimated Y values.

Now given n pairs of observations on Y and X, we would like to determine
the SRF in such a manner that it is as close as possible to the actual Y. To
this end, we may adopt the following criterion: Choose the SRF in such a
way that the sum of the residuals 

∑
ûi =

∑
(Yi − Ŷi) is as small as possible.

Although intuitively appealing, this is not a very good criterion, as can be
seen in the hypothetical scattergram shown in Figure 3.1.

If we adopt the criterion of minimizing
∑

ûi , Figure 3.1 shows that the
residuals û2 and û3 as well as the residuals û1 and û4 receive the same weight
in the sum (û1 + û2 + û3 + û4), although the first two residuals are much
closer to the SRF than the latter two. In other words, all the residuals receive
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TABLE 3.1 EXPERIMENTAL DETERMINATION OF THE SRF

Yi Xt Ŷ1i û 1i û 1i
2 Ŷ2i û 2i û 2i

2

(1) (2) (3) (4) (5) (6) (7) (8)

4 1 2.929 1.071 1.147 4 0 0
5 4 7.000 −2.000 4.000 7 −2 4
7 5 8.357 −1.357 1.841 8 −1 1

12 6 9.714 2.286 5.226 9 3 9

Sum: 28 16 0.0 12.214 0 14

Notes: Ŷ1i = 1.572 + 1.357Xi (i.e., β̂1 = 1.572 and β̂2 = 1.357)
Ŷ2i = 3.0 + 1.0Xi (i.e., β̂1 = 3 and β̂2 = 1.0)
û 1i = (Yi − Ŷ1i)
û 2i = (Yi − Ŷ2i)

equal importance no matter how close or how widely scattered the individ-
ual observations are from the SRF. A consequence of this is that it is quite
possible that the algebraic sum of the ûi is small (even zero) although the
ûi are widely scattered about the SRF. To see this, let û1, û2, û3, and û4 in
Figure 3.1 assume the values of 10, −2, +2, and −10, respectively. The alge-
braic sum of these residuals is zero although û1 and û4 are scattered more
widely around the SRF than û2 and û3. We can avoid this problem if we
adopt the least-squares criterion, which states that the SRF can be fixed in
such a way that

∑
û2

i =
∑

(Yi − Ŷi)2

=
∑

(Yi − β̂1 − β̂2 Xi)2
(3.1.2)

is as small as possible, where û2
i are the squared residuals. By squaring ûi ,

this method gives more weight to residuals such as û1 and û4 in Figure 3.1
than the residuals û2 and û3. As noted previously, under the minimum 

∑
ûi

criterion, the sum can be small even though the ûi are widely spread about
the SRF. But this is not possible under the least-squares procedure, for the
larger the ûi (in absolute value), the larger the 

∑
û2

i . A further justification
for the least-squares method lies in the fact that the estimators obtained by
it have some very desirable statistical properties, as we shall see shortly.

It is obvious from (3.1.2) that
∑

û2
i = f (β̂1, β̂2) (3.1.3)

that is, the sum of the squared residuals is some function of the estima-
tors β̂1 and β̂2. For any given set of data, choosing different values for β̂1 and
β̂2 will give different û’s and hence different values of 

∑
û2

i . To see this
clearly, consider the hypothetical data on Y and X given in the first two
columns of Table 3.1. Let us now conduct two experiments. In experiment 1,
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let β̂1 = 1.572 and β̂2 = 1.357 (let us not worry right now about how we got
these values; say, it is just a guess).1 Using these β̂ values and the X values
given in column (2) of Table 3.1, we can easily compute the estimated Yi

given in column (3) of the table as Ŷ1i (the subscript 1 is to denote the first
experiment). Now let us conduct another experiment, but this time using
the values of β̂1 = 3 and β̂2 = 1. The estimated values of Yi from this experi-
ment are given as Ŷ2i in column (6) of Table 3.1. Since the β̂ values in the
two experiments are different, we get different values for the estimated
residuals, as shown in the table; û1i are the residuals from the first experi-
ment and û2i from the second experiment. The squares of these residuals
are given in columns (5) and (8). Obviously, as expected from (3.1.3), these
residual sums of squares are different since they are based on different sets
of β̂ values.

Now which sets of β̂ values should we choose? Since the β̂ values of the
first experiment give us a lower

∑
û2

i (= 12.214) than that obtained from
the β̂ values of the second experiment (= 14), we might say that the β̂’s of the
first experiment are the “best” values. But how do we know? For, if we had
infinite time and infinite patience, we could have conducted many more
such experiments, choosing different sets of β̂’s each time and comparing the
resulting

∑
û2

i and then choosing that set of β̂ values that gives us the least
possible value of

∑
û2

i assuming of course that we have considered all the
conceivable values of β1 and β2. But since time, and certainly patience, are
generally in short supply, we need to consider some shortcuts to this trial-
and-error process. Fortunately, the method of least squares provides us such
a shortcut. The principle or the method of least squares chooses β̂1 and β̂2
in such a manner that, for a given sample or set of data,

∑
û2

i is as small as
possible. In other words, for a given sample, the method of least squares
provides us with unique estimates of β1 and β2 that give the smallest possi-
ble value of

∑
û2

i . How is this accomplished? This is a straight-forward exer-
cise in differential calculus. As shown in Appendix 3A, Section 3A.1, the
process of differentiation yields the following equations for estimating β1
and β2:

(3.1.4)

(3.1.5)

where n is the sample size. These simultaneous equations are known as the
normal equations.

∑
Yi Xi = β̂1

∑
Xi + β̂2

∑
X2

i

∑
Yi = nβ̂1 + β̂2

∑
Xi

1For the curious, these values are obtained by the method of least squares, discussed
shortly. See Eqs. (3.1.6) and (3.1.7).
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2Note 1:
∑

x2
i =

∑
(Xi − X̄)2 =

∑
X2

i − 2
∑

Xi X̄ +
∑

X̄2 =
∑

X2
i − 2X̄

∑
Xi +

∑
X̄2, since X̄

is a constant. Further noting that 
∑

Xi = nX̄ and
∑

X̄2 = nX̄2 since X̄ is a constant, we finally
get

∑
x2

i =
∑

X2
i − nX̄2.

Note 2:
∑

xi yi =
∑

xi(Yi − Ȳ) =
∑

xiYi − Ȳ
∑

xi =
∑

xiYi − Ȳ
∑

(Xi − X̄) =
∑

xiYi , since Ȳ
is a constant and since the sum of deviations of a variable from its mean value [e.g., 

∑
(Xi − X̄)]

is always zero. Likewise, 
∑

yi =
∑

(Yi − Ȳ) = 0.

Solving the normal equations simultaneously, we obtain 

where X̄ and Ȳ are the sample means of X and Y and where we define xi =
(Xi − X̄) and yi = (Yi − Ȳ). Henceforth we adopt the convention of letting the
lowercase letters denote deviations from mean values.

β̂1 =
∑

X2
i
∑

Yi −
∑

Xi
∑

XiYi

n
∑

X2
i −

(∑
Xi

)2

= Ȳ − β̂2 X̄

(3.1.7)

The last step in (3.1.7) can be obtained directly from (3.1.4) by simple alge-
braic manipulations.

Incidentally, note that, by making use of simple algebraic identities, for-
mula (3.1.6) for estimating β2 can be alternatively expressed as

The estimators obtained previously are known as the least-squares
estimators, for they are derived from the least-squares principle. Note the
following numerical properties of estimators obtained by the method of
OLS: “Numerical properties are those that hold as a consequence of the use

(3.1.8)2

β̂2 =
∑

xi yi∑
x2

i

=
∑

xiYi∑
X2

i − nX̄2

=
∑

Xi yi∑
X2

i − nX̄2

(3.1.6)

β̂2 = n
∑

XiYi −
∑

Xi
∑

Yi

n
∑

X2
i −

(∑
Xi

)2

=
∑

(Xi − X̄)(Yi − Ȳ)
∑

(Xi − X̄)2

=
∑

xi yi∑
x2

i

liuyang
高亮
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Y

Y

X
X

SRF

Yi = β β1 + 2 Xi

FIGURE 3.2 Diagram showing that the sample regression line passes through the sample mean values of Y and X.

3Russell Davidson and James G. MacKinnon, Estimation and Inference in Econometrics,
Oxford University Press, New York, 1993, p. 3.

4Ibid.

of ordinary least squares, regardless of how the data were generated.”3

Shortly, we will also consider the statistical properties of OLS estimators,
that is, properties “that hold only under certain assumptions about the way
the data were generated.”4 (See the classical linear regression model in
Section 3.2.)

I. The OLS estimators are expressed solely in terms of the observable (i.e.,
sample) quantities (i.e., X and Y). Therefore, they can be easily computed.

II. They are point estimators; that is, given the sample, each estimator
will provide only a single (point) value of the relevant population para-
meter. (In Chapter 5 we will consider the so-called interval estimators,
which provide a range of possible values for the unknown population
parameters.)

III. Once the OLS estimates are obtained from the sample data, the sample
regression line (Figure 3.1) can be easily obtained. The regression line
thus obtained has the following properties:
1. It passes through the sample means of Y and X. This fact is obvious

from (3.1.7), for the latter can be written as Ȳ = β̂1 + β̂2 X̄, which is
shown diagrammatically in Figure 3.2.
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2. The mean value of the estimated Y = Ŷi is equal to the mean value of
the actual Y for

Ŷi = β̂1 + β̂2 Xi

= (Ȳ − β̂2 X̄) + β̂2 Xi

= Ȳ + β̂2(Xi − X̄)

(3.1.9)

Summing both sides of this last equality over the sample values and
dividing through by the sample size n gives

¯̂Y = Ȳ (3.1.10)5

where use is made of the fact that 
∑

(Xi − X̄) = 0. (Why?)
3. The mean value of the residuals ûi is zero. From Appendix 3A,

Section 3A.1, the first equation is 

−2
∑

(Yi − β̂1 − β̂2 Xi) = 0

But since ûi = Yi − β̂1 − β̂2 Xi , the preceding equation reduces to
−2

∑
ûi = 0, whence ¯̂u = 0.6

As a result of the preceding property, the sample regression

Yi = β̂1 + β̂2 Xi + ûi (2.6.2)

can be expressed in an alternative form where both Y and X are ex-
pressed as deviations from their mean values. To see this, sum (2.6.2)
on both sides to give

∑
Yi = nβ̂1 + β̂2

∑
Xi +

∑
ûi

= nβ̂1 + β̂2

∑
Xi since

∑
ûi = 0

(3.1.11)

Dividing Eq. (3.1.11) through by n, we obtain

Ȳ = β̂1 + β̂2 X̄ (3.1.12)

which is the same as (3.1.7). Subtracting Eq. (3.1.12) from (2.6.2),
we obtain

Yi − Ȳ = β̂2(Xi − X̄) + ûi

5Note that this result is true only when the regression model has the intercept term β1 in it.
As App. 6A, Sec. 6A.1 shows, this result need not hold when β1 is absent from the model.

6This result also requires that the intercept term β1 be present in the model (see App. 6A,
Sec. 6A.1).
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or

(3.1.13)

where yi and xi , following our convention, are deviations from their
respective (sample) mean values.

Equation (3.1.13) is known as the deviation form. Notice that the
intercept term β̂1 is no longer present in it. But the intercept term
can always be estimated by (3.1.7), that is, from the fact that the
sample regression line passes through the sample means of Y and X.
An advantage of the deviation form is that it often simplifies com-
puting formulas.

In passing, note that in the deviation form, the SRF can be writ-
ten as

(3.1.14)

whereas in the original units of measurement it was Ŷi = β̂1 + β̂2 Xi ,
as shown in (2.6.1).

4. The residuals ûi are uncorrelated with the predicted Yi . This state-
ment can be verified as follows: using the deviation form, we can write

∑
ŷi ûi = β̂2

∑
xiûi

= β̂2

∑
xi(yi − β̂2xi)

= β̂2

∑
xi yi − β̂2

2

∑
x2

i
(3.1.15)

= β̂2
2

∑
x2

i − β̂2
2

∑
x2

i

= 0

where use is made of the fact that β̂2 =
∑

xi yi/
∑

x2
i .

5. The residuals ûi are uncorrelated with Xi; that is, 
∑

ûi Xi = 0. This
fact follows from Eq. (2) in Appendix 3A, Section 3A.1.

3.2 THE CLASSICAL LINEAR REGRESSION MODEL:
THE ASSUMPTIONS UNDERLYING THE METHOD
OF LEAST SQUARES

If our objective is to estimate β1 and β2 only, the method of OLS discussed in
the preceding section will suffice. But recall from Chapter 2 that in regres-
sion analysis our objective is not only to obtain β̂1 and β̂2 but also to draw in-
ferences about the true β1 and β2. For example, we would like to know how
close β̂1 and β̂2 are to their counterparts in the population or how close Ŷi is
to the true E(Y | Xi). To that end, we must not only specify the functional
form of the model, as in (2.4.2), but also make certain assumptions about

ŷi = β̂2xi

yi = β̂2xi + ûi

liuyang
高亮
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Assumption 1: Linear regression model. The regression model is linear in the parame-
ters, as shown in (2.4.2)

Yi = β1 + β2Xi + ui (2.4.2)

Assumption 2: X values are fixed in repeated sampling. Values taken by the regressor X
are considered fixed in repeated samples. More technically, X is assumed to be nonstochastic.

the manner in which Yi are generated. To see why this requirement is
needed, look at the PRF: Yi = β1 + β2 Xi + ui . It shows that Yi depends on
both Xi and ui . Therefore, unless we are specific about how Xi and ui are
created or generated, there is no way we can make any statistical inference
about the Yi and also, as we shall see, about β1 and β2. Thus, the assumptions
made about the Xi variable(s) and the error term are extremely critical to the
valid interpretation of the regression estimates.

The Gaussian, standard, or classical linear regression model (CLRM),
which is the cornerstone of most econometric theory, makes 10 assump-
tions.7 We first discuss these assumptions in the context of the two-variable
regression model; and in Chapter 7 we extend them to multiple regression
models, that is, models in which there is more than one regressor.

We already discussed model (2.4.2) in Chapter 2. Since linear-in-parameter
regression models are the starting point of the CLRM, we will maintain this
assumption throughout this book. Keep in mind that the regressand Y and
the regressor X themselves may be nonlinear, as discussed in Chapter 2.8

7It is classical in the sense that it was developed first by Gauss in 1821 and since then has
served as a norm or a standard against which may be compared the regression models that do
not satisfy the Gaussian assumptions.

8However, a brief discussion of nonlinear-in-the-parameter regression models is given in
Chap. 14.

This assumption is implicit in our discussion of the PRF in Chapter 2.
But it is very important to understand the concept of “fixed values in re-
peated sampling,” which can be explained in terms of our example given in
Table 2.1. Consider the various Y populations corresponding to the levels of
income shown in that table. Keeping the value of income X fixed, say, at level
$80, we draw at random a family and observe its weekly family consump-
tion expenditure Y as, say, $60. Still keeping X at $80, we draw at random
another family and observe its Y value as $75. In each of these drawings
(i.e., repeated sampling), the value of X is fixed at $80. We can repeat this
process for all the X values shown in Table 2.1. As a matter of fact, the sam-
ple data shown in Tables 2.4 and 2.5 were drawn in this fashion.

What all this means is that our regression analysis is conditional regres-
sion analysis, that is, conditional on the given values of the regressor(s) X.
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X1 X2 X3 X4

X

Y
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Yi = β β1 + 2XiPRF:
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FIGURE 3.3 Conditional distribution of the disturbances ui.

Assumption 3: Zero mean value of disturbance u i. Given the value of X, the mean, or
expected, value of the random disturbance term ui is zero. Technically, the conditional mean
value of ui is zero. Symbolically, we have

E(ui |Xi) = 0 (3.2.1)

Assumption 3 states that the mean value of ui , conditional upon the given
Xi , is zero. Geometrically, this assumption can be pictured as in Figure 3.3,
which shows a few values of the variable X and the Y populations associated
with each of them. As shown, each Y population corresponding to a given X
is distributed around its mean value (shown by the circled points on the
PRF) with some Y values above the mean and some below it. The distances
above and below the mean values are nothing but the ui , and what (3.2.1)
requires is that the average or mean value of these deviations corresponding
to any given X should be zero.9

This assumption should not be difficult to comprehend in view of the dis-
cussion in Section 2.4 [see Eq. (2.4.5)]. All that this assumption says is that
the factors not explicitly included in the model, and therefore subsumed in ui ,
do not systematically affect the mean value of Y; so to speak, the positive ui

9For illustration, we are assuming merely that the u’s are distributed symmetrically as
shown in Figure 3.3. But shortly we will assume that the u’s are distributed normally.
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Assumption 4: Homoscedasticity or equal variance of u i. Given the value of X, the vari-
ance of ui is the same for all observations. That is, the conditional variances of ui are identi-
cal. Symbolically, we have

var (ui |Xi) = E [ui − E(ui |Xi)]2

= E(ui
2 | Xi) because of Assumption 3

= σ2

(3.2.2)

where var stands for variance.

values cancel out the negative ui values so that their average or mean effect
on Y is zero.10

In passing, note that the assumption E(ui | Xi) = 0 implies that E(Yi | Xi) =
βi + β2 Xi . (Why?) Therefore, the two assumptions are equivalent.

Eq. (3.2.2) states that the variance of ui for each Xi (i.e., the conditional
variance of ui) is some positive constant number equal to σ 2. Technically,
(3.2.2) represents the assumption of homoscedasticity, or equal (homo)
spread (scedasticity) or equal variance. The word comes from the Greek verb
skedanime, which means to disperse or scatter. Stated differently, (3.2.2)
means that the Y populations corresponding to various X values have the
same variance. Put simply, the variation around the regression line (which
is the line of average relationship between Y and X) is the same across the X
values; it neither increases or decreases as X varies. Diagrammatically, the
situation is as depicted in Figure 3.4.
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FIGURE 3.4 Homoscedasticity.

10For a more technical reason why Assumption 3 is necessary see E. Malinvaud, Statistical
Methods of Econometrics, Rand McNally, Chicago, 1966, p. 75. See also exercise 3.3.

liuyang
高亮




Gujarati: Basic 
Econometrics, Fourth 
Edition

I. Single−Equation 
Regression Models

3. Two−Variable 
Regression Model: The 
Problem of Estimation

© The McGraw−Hill 
Companies, 2004

CHAPTER THREE: TWO-VARIABLE REGRESSION MODEL 69

X

P
ro

ba
bi

li
ty

 d
en

si
ty

 o
f 

u
i

Y

Xi

X2

X1

b1 + b 2    i β  β  X

f(u)

FIGURE 3.5 Heteroscedasticity.

In contrast, consider Figure 3.5, where the conditional variance of the Y
population varies with X. This situation is known appropriately as het-
eroscedasticity, or unequal spread, or variance. Symbolically, in this situa-
tion (3.2.2) can be written as

var (ui | Xi) = σ 2
i (3.2.3)

Notice the subscript on σ 2 in Eq. (3.2.3), which indicates that the variance
of the Y population is no longer constant.

To make the difference between the two situations clear, let Y represent
weekly consumption expenditure and X weekly income. Figures 3.4 and 3.5
show that as income increases the average consumption expenditure also
increases. But in Figure 3.4 the variance of consumption expenditure re-
mains the same at all levels of income, whereas in Figure 3.5 it increases with
increase in income. In other words, richer families on the average consume
more than poorer families, but there is also more variability in the con-
sumption expenditure of the former.

To understand the rationale behind this assumption, refer to Figure 3.5. As
this figure shows, var (u | X1) < var (u | X2), . . . , < var (u | Xi). Therefore, the
likelihood is that the Y observations coming from the population with
X = X1 would be closer to the PRF than those coming from populations cor-
responding to X = X2, X = X3, and so on. In short, not all Y values corre-
sponding to the various X’s will be equally reliable, reliability being judged by
how closely or distantly the Y values are distributed around their means, that
is, the points on the PRF. If this is in fact the case, would we not prefer to
sample from those Y populations that are closer to their mean than those
that are widely spread? But doing so might restrict the variation we obtain
across X values.
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Assumption 5: No autocorrelation between the disturbances. Given any two X values,
Xi and Xj (i ̸= j ), the correlation between any two ui and uj (i ̸= j) is zero. Symbolically,

cov (ui, uj |Xi, Xj) = E {[ui − E (ui)] | Xi}{[uj − E(uj)] | Xj}

= E(ui |Xi)(uj | Xj) (why?)

= 0

(3.2.5)

where i and j are two different observations and where cov means covariance.

By invoking Assumption 4, we are saying that at this stage all Y values
corresponding to the various X’s are equally important. In Chapter 11 we
shall see what happens if this is not the case, that is, where there is het-
eroscedasticity.

In passing, note that Assumption 4 implies that the conditional variances
of Yi are also homoscedastic. That is,

var (Yi | Xi) = σ 2 (3.2.4)

Of course, the unconditional variance of Y is σ 2
Y . Later we will see the im-

portance of distinguishing between conditional and unconditional vari-
ances of Y (see Appendix A for details of conditional and unconditional
variances).

In words, (3.2.5) postulates that the disturbances ui and uj are uncorre-
lated. Technically, this is the assumption of no serial correlation, or no
autocorrelation. This means that, given Xi , the deviations of any two Y val-
ues from their mean value do not exhibit patterns such as those shown in
Figure 3.6a and b. In Figure 3.6a, we see that the u’s are positively corre-
lated, a positive u followed by a positive u or a negative u followed by a
negative u. In Figure 3.6b, the u’s are negatively correlated, a positive u
followed by a negative u and vice versa.

If the disturbances (deviations) follow systematic patterns, such as those
shown in Figure 3.6a and b, there is auto- or serial correlation, and what As-
sumption 5 requires is that such correlations be absent. Figure 3.6c shows
that there is no systematic pattern to the u’s, thus indicating zero correlation.

The full import of this assumption will be explained thoroughly in Chap-
ter 12. But intuitively one can explain this assumption as follows. Suppose
in our PRF (Yt = β1 + β2 Xt + ut) that ut and ut−1 are positively correlated.
Then Yt depends not only on Xt but also on ut−1 for ut−1 to some extent
determines ut . At this stage of the development of the subject matter, by in-
voking Assumption 5, we are saying that we will consider the systematic
effect, if any, of Xt on Yt and not worry about the other influences that might
act on Y as a result of the possible intercorrelations among the u’s. But, as
noted in Chapter 12, we will see how intercorrelations among the distur-
bances can be brought into the analysis and with what consequences.
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FIGURE 3.6 Patterns of correlation among the disturbances. (a) positive serial correlation; (b) negative serial
correlation; (c) zero correlation.

Assumption 6: Zero covariance between u i and Xi, or E(uiXi) = 0. Formally,

cov (ui, Xi) = E [ui − E(ui)][Xi − E(Xi)]

= E [ui(Xi − E(Xi))] since E(ui) = 0

= E (uiXi) − E(Xi)E(ui) since E(Xi) is nonstochastic (3.2.6)

= E(uiXi) since E(ui) = 0

= 0 by assumption

Assumption 6 states that the disturbance u and explanatory variable X
are uncorrelated. The rationale for this assumption is as follows: When we
expressed the PRF as in (2.4.2), we assumed that X and u (which may rep-
resent the influence of all the omitted variables) have separate (and additive)
influence on Y. But if X and u are correlated, it is not possible to assess their
individual effects on Y. Thus, if X and u are positively correlated, X increases
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Assumption 7: The number of observations n must be greater than the number of
parameters to be estimated. Alternatively, the number of observations n must be greater
than the number of explanatory variables.

when u increases and it decreases when u decreases. Similarly, if X and u
are negatively correlated, X increases when u decreases and it decreases
when u increases. In either case, it is difficult to isolate the influence of X
and u on Y.

Assumption 6 is automatically fulfilled if X variable is nonrandom or
nonstochastic and Assumption 3 holds, for in that case, cov (ui,Xi) = [Xi −
E(Xi)]E[ui − E(ui)] = 0. (Why?) But since we have assumed that our X vari-
able not only is nonstochastic but also assumes fixed values in repeated
samples,11 Assumption 6 is not very critical for us; it is stated here merely to
point out that the regression theory presented in the sequel holds true even
if the X ’s are stochastic or random, provided they are independent or at
least uncorrelated with the disturbances ui .

12 (We shall examine the conse-
quences of relaxing Assumption 6 in Part II.) 

11Recall that in obtaining the samples shown in Tables 2.4 and 2.5, we kept the same X
values.

12As we will discuss in Part II, if the X ’s are stochastic but distributed independently of ui ,
the properties of least estimators discussed shortly continue to hold, but if the stochastic X’s are
merely uncorrelated with ui , the properties of OLS estimators hold true only if the sample size
is very large. At this stage, however, there is no need to get bogged down with this theoretical
point.

13The sample variance of X is

var (X) =
∑

(Xi − X̄)2

n − 1

where n is sample size.

This assumption is not so innocuous as it seems. In the hypothetical
example of Table 3.1, imagine that we had only the first pair of observations
on Y and X (4 and 1). From this single observation there is no way to esti-
mate the two unknowns, β1 and β2. We need at least two pairs of observa-
tions to estimate the two unknowns. In a later chapter we will see the criti-
cal importance of this assumption.

Assumption 8: Variability in X values. The X values in a given sample must not all be the
same. Technically, var (X ) must be a finite positive number.13

This assumption too is not so innocuous as it looks. Look at Eq. (3.1.6).
If all the X values are identical, then Xi = X̄ (Why?) and the denominator of
that equation will be zero, making it impossible to estimate β2 and therefore
β1. Intuitively, we readily see why this assumption is important. Looking at
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Assumption 9: The regression model is correctly specified. Alternatively, there is no
specification bias or error in the model used in empirical analysis.

our family consumption expenditure example in Chapter 2, if there is very
little variation in family income, we will not be able to explain much of the
variation in the consumption expenditure. The reader should keep in mind
that variation in both Y and X is essential to use regression analysis as a re-
search tool. In short, the variables must vary!

As we discussed in the Introduction, the classical econometric methodol-
ogy assumes implicitly, if not explicitly, that the model used to test an eco-
nomic theory is “correctly specified.” This assumption can be explained
informally as follows. An econometric investigation begins with the specifi-
cation of the econometric model underlying the phenomenon of interest.
Some important questions that arise in the specification of the model
include the following: (1) What variables should be included in the model?
(2) What is the functional form of the model? Is it linear in the parameters,
the variables, or both? (3) What are the probabilistic assumptions made
about the Yi , the Xi , and the ui entering the model?

These are extremely important questions, for, as we will show in Chap-
ter 13, by omitting important variables from the model, or by choosing the
wrong functional form, or by making wrong stochastic assumptions about
the variables of the model, the validity of interpreting the estimated regres-
sion will be highly questionable. To get an intuitive feeling about this, refer
to the Phillips curve shown in Figure 1.3. Suppose we choose the following
two models to depict the underlying relationship between the rate of change
of money wages and the unemployment rate:

Yi = α1 + α2 Xi + ui (3.2.7)

Yi = β1 + β2

(
1
Xi

)
+ ui (3.2.8)

where Yi = the rate of change of money wages, and Xi = the unemployment
rate.

The regression model (3.2.7) is linear both in the parameters and the
variables, whereas (3.2.8) is linear in the parameters (hence a linear regres-
sion model by our definition) but nonlinear in the variable X. Now consider
Figure 3.7.

If model (3.2.8) is the “correct” or the “true” model, fitting the model
(3.2.7) to the scatterpoints shown in Figure 3.7 will give us wrong predic-
tions: Between points A and B, for any given Xi the model (3.2.7) is going to
overestimate the true mean value of Y, whereas to the left of A (or to the
right of B) it is going to underestimate (or overestimate, in absolute terms)
the true mean value of Y.
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FIGURE 3.7 Linear and nonlinear Phillips curves.

The preceding example is an instance of what is called a specification
bias or a specification error; here the bias consists in choosing the wrong
functional form. We will see other types of specification errors in Chapter 13.

Unfortunately, in practice one rarely knows the correct variables to in-
clude in the model or the correct functional form of the model or the correct
probabilistic assumptions about the variables entering the model for the
theory underlying the particular investigation (e.g., the Phillips-type money
wage change–unemployment rate tradeoff) may not be strong or robust
enough to answer all these questions. Therefore, in practice, the econome-
trician has to use some judgment in choosing the number of variables enter-
ing the model and the functional form of the model and has to make some
assumptions about the stochastic nature of the variables included in the
model. To some extent, there is some trial and error involved in choosing the
“right” model for empirical analysis.14

If judgment is required in selecting a model, what is the need for Assump-
tion 9? Without going into details here (see Chapter 13), this assumption
is there to remind us that our regression analysis and therefore the results
based on that analysis are conditional upon the chosen model and to warn
us that we should give very careful thought in formulating econometric

14But one should avoid what is known as “data mining,” that is, trying every possible
model with the hope that at least one will fit the data well. That is why it is essential that there
be some economic reasoning underlying the chosen model and that any modifications in
the model should have some economic justification. A purely ad hoc model may be difficult to
justify on theoretical or a priori grounds. In short, theory should be the basis of estimation. But
we will have more to say about data mining in Chap. 13, for there are some who argue that in
some situations data mining can serve a useful purpose.
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Assumption 10: There is no perfect multicollinearity. That is, there are no perfect linear
relationships among the explanatory variables.

models, especially when there may be several competing theories trying to
explain an economic phenomenon, such as the inflation rate, or the demand
for money, or the determination of the appropriate or equilibrium value of a
stock or a bond. Thus, econometric model-building, as we shall discover, is
more often an art rather than a science.

Our discussion of the assumptions underlying the classical linear regres-
sion model is now completed. It is important to note that all these assump-
tions pertain to the PRF only and not the SRF. But it is interesting to observe
that the method of least squares discussed previously has some proper-
ties that are similar to the assumptions we have made about the PRF. For
example, the finding that 

∑
ûi = 0, and, therefore, ¯̂u = 0, is akin to the as-

sumption that E(ui | Xi) = 0. Likewise, the finding that 
∑

ûi Xi = 0 is similar
to the assumption that cov (ui , Xi) = 0. It is comforting to note that the
method of least squares thus tries to “duplicate” some of the assumptions
we have imposed on the PRF.

Of course, the SRF does not duplicate all the assumptions of the CLRM.
As we will show later, although cov (ui , uj) = 0 (i ̸= j) by assumption, it is
not true that the sample cov (ûi , ûj) = 0 (i ̸= j). As a matter of fact, we will
show later that the residuals not only are autocorrelated but also are het-
eroscedastic (see Chapter 12).

When we go beyond the two-variable model and consider multiple re-
gression models, that is, models containing several regressors, we add the
following assumption.

15Milton Friedman, Essays in Positive Economics, University of Chicago Press, Chicago,
1953, p. 14.

We will discuss this assumption in Chapter 7, where we discuss multiple
regression models.

A Word about These Assumptions

The million-dollar question is: How realistic are all these assumptions? The
“reality of assumptions” is an age-old question in the philosophy of science.
Some argue that it does not matter whether the assumptions are realistic.
What matters are the predictions based on those assumptions. Notable
among the “irrelevance-of-assumptions thesis” is Milton Friedman. To him,
unreality of assumptions is a positive advantage: “to be important . . . a
hypothesis must be descriptively false in its assumptions.”15

One may not subscribe to this viewpoint fully, but recall that in any
scientific study we make certain assumptions because they facilitate the
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development of the subject matter in gradual steps, not because they are
necessarily realistic in the sense that they replicate reality exactly. As one
author notes, “. . . if simplicity is a desirable criterion of good theory, all
good theories idealize and oversimplify outrageously.”16

What we plan to do is first study the properties of the CLRM thoroughly,
and then in later chapters examine in depth what happens if one or more of
the assumptions of CLRM are not fulfilled. At the end of this chapter, we
provide in Table 3.4 a guide to where one can find out what happens to the
CLRM if a particular assumption is not satisfied.

As a colleague pointed out to me, when we review research done by
others, we need to consider whether the assumptions made by the re-
searcher are appropriate to the data and problem. All too often, published
research is based on implicit assumptions about problem and data that are
likely not correct and that produce estimates based on these assumptions.
Clearly, the knowledgeable reader should, realizing these problems, adopt a
skeptical attitude toward the research. The assumptions listed in Table 3.4
therefore provide a checklist for guiding our research and for evaluating the
research of others.

With this backdrop, we are now ready to study the CLRM. In particular,
we want to find out the statistical properties of OLS compared with the
purely numerical properties discussed earlier. The statistical properties of
OLS are based on the assumptions of CLRM already discussed and are
enshrined in the famous Gauss–Markov theorem. But before we turn to
this theorem, which provides the theoretical justification for the popularity
of OLS, we first need to consider the precision or standard errors of the
least-squares estimates.

3.3 PRECISION OR STANDARD ERRORS 
OF LEAST-SQUARES ESTIMATES

From Eqs. (3.1.6) and (3.1.7), it is evident that least-squares estimates are a
function of the sample data. But since the data are likely to change from
sample to sample, the estimates will change ipso facto. Therefore, what is
needed is some measure of “reliability” or precision of the estimators β̂1
and β̂2. In statistics the precision of an estimate is measured by its standard
error (se).17 Given the Gaussian assumptions, it is shown in Appendix 3A,
Section 3A.3 that the standard errors of the OLS estimates can be obtained

16Mark Blaug, The Methodology of Economics: Or How Economists Explain, 2d ed.,
Cambridge University Press, New York, 1992, p. 92.

17The standard error is nothing but the standard deviation of the sampling distribution of
the estimator, and the sampling distribution of an estimator is simply a probability or fre-
quency distribution of the estimator, that is, a distribution of the set of values of the estimator
obtained from all possible samples of the same size from a given population. Sampling distri-
butions are used to draw inferences about the values of the population parameters on the basis
of the values of the estimators calculated from one or more samples. (For details, see App. A.)
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as follows:

where var = variance and se = standard error and where σ 2 is the constant
or homoscedastic variance of ui of Assumption 4.

All the quantities entering into the preceding equations except σ 2 can be
estimated from the data. As shown in Appendix 3A, Section 3A.5, σ 2 itself is
estimated by the following formula:

σ̂ 2 =
∑

û2
i

n − 2
(3.3.5)

where σ̂ 2 is the OLS estimator of the true but unknown σ 2 and where the
expression n − 2 is known as the number of degrees of freedom (df),

∑
û2

i
being the sum of the residuals squared or the residual sum of squares
(RSS).18

Once
∑

û2
i is known, σ̂ 2 can be easily computed. 

∑
û2

i itself can be com-
puted either from (3.1.2) or from the following expression (see Section 3.5
for the proof):

∑
û2

i =
∑

y2
i − β̂2

2

∑
x2

i (3.3.6)

Compared with Eq. (3.1.2), Eq. (3.3.6) is easy to use, for it does not require
computing ûi for each observation although such a computation will be use-
ful in its own right (as we shall see in Chapters 11 and 12).

Since

β̂2 =
∑

xi yi∑
x2

i

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)

var (β̂2) = σ 2

∑
x2

i

se (β̂2) = σ
√∑

x2
i

var (β̂1) =
∑

X2
i

n
∑

x2
i
σ 2

se (β̂1) =

√ ∑
X2

i

n
∑

x2
i
σ

18The term number of degrees of freedom means the total number of observations in the
sample (= n) less the number of independent (linear) constraints or restrictions put on them.
In other words, it is the number of independent observations out of a total of n observations.
For example, before the RSS (3.1.2) can be computed, β̂1 and β̂2 must first be obtained. These
two estimates therefore put two restrictions on the RSS. Therefore, there are n − 2, not n, in-
dependent observations to compute the RSS. Following this logic, in the three-variable regres-
sion RSS will have n − 3 df, and for the k-variable model it will have n − k df. The general rule
is this: df = (n− number of parameters estimated).
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an alternative expression for computing 
∑

û2
i is

(3.3.7)

In passing, note that the positive square root of σ̂ 2

(3.3.8)

is known as the standard error of estimate or the standard error of the
regression (se). It is simply the standard deviation of the Y values about
the estimated regression line and is often used as a summary measure of
the “goodness of fit” of the estimated regression line, a topic discussed in
Section 3.5.

Earlier we noted that, given Xi , σ 2 represents the (conditional) variance
of both ui and Yi . Therefore, the standard error of the estimate can also be
called the (conditional) standard deviation of ui and Yi . Of course, as usual,
σ 2

Y and σY represent, respectively, the unconditional variance and uncondi-
tional standard deviation of Y.

Note the following features of the variances (and therefore the standard
errors) of β̂1 and β̂2.

1. The variance of β̂2 is directly proportional to σ 2 but inversely propor-
tional to 

∑
x2

i . That is, given σ 2, the larger the variation in the X values, the
smaller the variance of β̂2 and hence the greater the precision with which β2
can be estimated. In short, given σ 2, if there is substantial variation in the X
values (recall Assumption 8), β2 can be measured more accurately than
when the Xi do not vary substantially. Also, given 

∑
x2

i , the larger the vari-
ance of σ 2, the larger the variance of β2. Note that as the sample size n
increases, the number of terms in the sum, 

∑
x2

i , will increase. As n in-
creases, the precision with which β2 can be estimated also increases. (Why?)

2. The variance of β̂1 is directly proportional to σ 2 and
∑

X2
i but in-

versely proportional to 
∑

x2
i and the sample size n.

3. Since β̂1 and β̂2 are estimators, they will not only vary from sample to
sample but in a given sample they are likely to be dependent on each other,
this dependence being measured by the covariance between them. It is
shown in Appendix 3A, Section 3A.4 that

(3.3.9)

cov (β̂1, β̂2) = −X̄ var (β̂2)

= −X̄
(

σ 2

∑
x2

i

)

σ̂ =

√ ∑
û2

i

n − 2

∑
û2

i =
∑

y2
i −

(∑
xi yi

)2

∑
x2

i
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Since var (β̂2) is always positive, as is the variance of any variable, the nature
of the covariance between β̂1 and β̂2 depends on the sign of X̄. If X̄ is posi-
tive, then as the formula shows, the covariance will be negative. Thus, if the
slope coefficient β2 is overestimated (i.e., the slope is too steep), the intercept
coefficient β1 will be underestimated (i.e., the intercept will be too small).
Later on (especially in the chapter on multicollinearity, Chapter 10), we will
see the utility of studying the covariances between the estimated regression
coefficients.

How do the variances and standard errors of the estimated regression
coefficients enable one to judge the reliability of these estimates? This is a
problem in statistical inference, and it will be pursued in Chapters 4 and 5.

3.4 PROPERTIES OF LEAST-SQUARES ESTIMATORS:
THE GAUSS–MARKOV THEOREM19

As noted earlier, given the assumptions of the classical linear regression
model, the least-squares estimates possess some ideal or optimum proper-
ties. These properties are contained in the well-known Gauss–Markov
theorem. To understand this theorem, we need to consider the best linear
unbiasedness property of an estimator.20 As explained in Appendix A, an
estimator, say the OLS estimator β̂2, is said to be a best linear unbiased
estimator (BLUE) of β2 if the following hold:

1. It is linear, that is, a linear function of a random variable, such as the
dependent variable Y in the regression model.

2. It is unbiased, that is, its average or expected value, E(β̂2), is equal to
the true value, β2.

3. It has minimum variance in the class of all such linear unbiased
estimators; an unbiased estimator with the least variance is known as an
efficient estimator.

In the regression context it can be proved that the OLS estimators are
BLUE. This is the gist of the famous Gauss–Markov theorem, which can be
stated as follows:

19Although known as the Gauss–Markov theorem, the least-squares approach of Gauss ante-
dates (1821) the minimum-variance approach of Markov (1900).

20The reader should refer to App. A for the importance of linear estimators as well as for a
general discussion of the desirable properties of statistical estimators.

Gauss–Markov Theorem: Given the assumptions of the classical linear regression model,
the least-squares estimators, in the class of unbiased linear estimators, have minimum
variance, that is, they are BLUE.

The proof of this theorem is sketched in Appendix 3A, Section 3A.6. The
full import of the Gauss–Markov theorem will become clearer as we move
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along. It is sufficient to note here that the theorem has theoretical as well as
practical importance.21

What all this means can be explained with the aid of Figure 3.8.
In Figure 3.8(a) we have shown the sampling distribution of the OLS

estimator β̂2, that is, the distribution of the values taken by β̂2 in repeated
sampling experiments (recall Table 3.1). For convenience we have assumed
β̂2 to be distributed symmetrically (but more on this in Chapter 4). As the
figure shows, the mean of the β̂2 values, E(β̂2), is equal to the true β2. In this
situation we say that β̂2 is an unbiased estimator of β2. In Figure 3.8(b) we
have shown the sampling distribution of β∗

2, an alternative estimator of β2

β2, β2β  β

β2β

β2β

β2β

β2β

β2β
(c) Sampling distributions of b2 and bβ2β β2β

(b) Sampling distribution of 2β
E(β2) = β2ββ

(a) Sampling distribution of β2β
E(β2) = β2ββ

*
*

*

*

*

*

FIGURE 3.8 Sampling distribution of OLS estimator
β̂2 and alternative estimator β∗

2.

21For example, it can be proved that any linear combination of the β ’s, such as (β1 − 2β2),
can be estimated by (β̂1 − 2β̂2), and this estimator is BLUE. For details, see Henri Theil, Intro-
duction to Econometrics, Prentice-Hall, Englewood Cliffs, N.J., 1978, pp. 401–402. Note a
technical point about the Gauss–Markov theorem: It provides only the sufficient (but not nec-
essary) condition for OLS to be efficient. I am indebted to Michael McAleer of the University of
Western Australia for bringing this point to my attention.
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obtained by using another (i.e., other than OLS) method. For convenience,
assume that β*

2, like β̂2, is unbiased, that is, its average or expected value is
equal to β2. Assume further that both β̂2 and β*

2 are linear estimators, that is,
they are linear functions of Y. Which estimator, β̂2 or β*

2, would you choose?
To answer this question, superimpose the two figures, as in Figure 3.8(c).

It is obvious that although both β̂2 and β*
2 are unbiased the distribution of β*

2
is more diffused or widespread around the mean value than the distribution
of β̂2. In other words, the variance of β*

2 is larger than the variance of β̂2.

Now given two estimators that are both linear and unbiased, one would
choose the estimator with the smaller variance because it is more likely to
be close to β2 than the alternative estimator. In short, one would choose the
BLUE estimator.

The Gauss–Markov theorem is remarkable in that it makes no assump-
tions about the probability distribution of the random variable ui , and there-
fore of Yi (in the next chapter we will take this up). As long as the
assumptions of CLRM are satisfied, the theorem holds. As a result, we need
not look for another linear unbiased estimator, for we will not find such an
estimator whose variance is smaller than the OLS estimator. Of course, if one
or more of these assumptions do not hold, the theorem is invalid. For exam-
ple, if we consider nonlinear-in-the-parameter regression models (which are
discussed in Chapter 14), we may be able to obtain estimators that may per-
form better than the OLS estimators. Also, as we will show in the chapter on
heteroscedasticity, if the assumption of homoscedastic variance is not ful-
filled, the OLS estimators, although unbiased and consistent, are no longer
minimum variance estimators even in the class of linear estimators.

The statistical properties that we have just discussed are known as finite
sample properties: These properties hold regardless of the sample size on
which the estimators are based. Later we will have occasions to consider the
asymptotic properties, that is, properties that hold only if the sample size
is very large (technically, infinite). A general discussion of finite-sample and
large-sample properties of estimators is given in Appendix A.

3.5 THE COEFFICIENT OF DETERMINATION r2:
A MEASURE OF “GOODNESS OF FIT”

Thus far we were concerned with the problem of estimating regression
coefficients, their standard errors, and some of their properties. We now con-
sider the goodness of fit of the fitted regression line to a set of data; that is,
we shall find out how “well” the sample regression line fits the data. From Fig-
ure 3.1 it is clear that if all the observations were to lie on the regression line,
we would obtain a “perfect” fit, but this is rarely the case. Generally, there will
be some positive ûi and some negative ûi . What we hope for is that these
residuals around the regression line are as small as possible. The coefficient
of determination r2 (two-variable case) or R2 (multiple regression) is a sum-
mary measure that tells how well the sample regression line fits the data.
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22See Peter Kennedy, “Ballentine: A Graphical Aid for Econometrics,” Australian Economics
Papers, vol. 20, 1981, pp. 414–416. The name Ballentine is derived from the emblem of the well-
known Ballantine beer with its circles.

23The term variation and variance are different. Variation means the sum of squares of the
deviations of a variable from its mean value. Variance is this sum of squares divided by the ap-
propriate degrees of freedom. In short, variance = variation/df.

Before we show how r2 is computed, let us consider a heuristic explana-
tion of r2 in terms of a graphical device, known as the Venn diagram, or the
Ballentine, as shown in Figure 3.9.22

In this figure the circle Y represents variation in the dependent variable Y
and the circle X represents variation in the explanatory variable X.23 The
overlap of the two circles (the shaded area) indicates the extent to which the
variation in Y is explained by the variation in X (say, via an OLS regression).
The greater the extent of the overlap, the greater the variation in Y is ex-
plained by X. The r2 is simply a numerical measure of this overlap. In the
figure, as we move from left to right, the area of the overlap increases, that
is, successively a greater proportion of the variation in Y is explained by X.
In short, r2 increases. When there is no overlap, r2 is obviously zero, but
when the overlap is complete, r2 is 1, since 100 percent of the variation in Y
is explained by X. As we shall show shortly, r2 lies between 0 and 1.

To compute this r2, we proceed as follows: Recall that

Yi = Ŷi + ûi (2.6.3)

or in the deviation form

yi = ŷi + ûi (3.5.1)

where use is made of (3.1.13) and (3.1.14). Squaring (3.5.1) on both sides

Y X Y X Y X

Y X
Y = X

Y X

(a) (b) (c)

(d) (e) (f)

FIGURE 3.9 The Ballentine view of r 2: (a) r 2 = 0; (f ) r 2 = 1.
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and summing over the sample, we obtain

(3.5.2)

since
∑

ŷi ûi = 0 (why?) and ŷi = β̂2xi .

The various sums of squares appearing in (3.5.2) can be described as
follows:

∑
y2

i =
∑

(Yi − Ȳ)2 = total variation of the actual Y values about
their sample mean, which may be called the total sum of squares (TSS).∑

ŷ2
i =

∑
(Ŷi − ¯̂Y)2 =

∑
(Ŷi − Ȳ)2 = β̂2

2
∑

x2
i = variation of the estimated Y

values about their mean ( ¯̂Y = Ȳ), which appropriately may be called the
sum of squares due to regression [i.e., due to the explanatory variable(s)], or
explained by regression, or simply the explained sum of squares (ESS).∑

û2
i = residual or unexplained variation of the Y values about the regres-

sion line, or simply the residual sum of squares (RSS). Thus, (3.5.2) is

TSS = ESS + RSS (3.5.3)

and shows that the total variation in the observed Y values about their mean
value can be partitioned into two parts, one attributable to the regression
line and the other to random forces because not all actual Y observations lie
on the fitted line. Geometrically, we have Figure 3.10.

∑
y2

i =
∑

ŷ2
i +

∑
û2

i + 2
∑

ŷi ûi

=
∑

ŷ2
i +

∑
û2

i

= β̂2
2

∑
x2

i +
∑

û2
i

(Yi –Y ) = total

ui = due to residual

SRF

B1 + B2Xiβ β

Yi

(Yi –Y ) = due to regression

Y

Y

0 Xi
X

Yi

FIGURE 3.10 Breakdown of the variation
of Yi into two components.
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Now dividing (3.5.3) by TSS on both sides, we obtain

1 = ESS
TSS

+ RSS
TSS

=
∑

(Ŷi − Ȳ)2

∑
(Yi − Ȳ)2

+
∑

û2
i∑

(Yi − Ȳ)2

(3.5.4)

We now define r2 as

(3.5.5)

or, alternatively, as

(3.5.5a)

The quantity r2 thus defined is known as the (sample) coefficient of deter-
mination and is the most commonly used measure of the goodness of fit of
a regression line. Verbally, r2 measures the proportion or percentage of the
total variation in Y explained by the regression model.

Two properties of r2 may be noted:

1. It is a nonnegative quantity. (Why?)
2. Its limits are 0 ≤ r2 ≤ 1. An r2 of 1 means a perfect fit, that is, Ŷi = Yi

for each i. On the other hand, an r2 of zero means that there is no relation-
ship between the regressand and the regressor whatsoever (i.e., β̂2 = 0). In
this case, as (3.1.9) shows, Ŷi = β̂1 = Ȳ, that is, the best prediction of any Y
value is simply its mean value. In this situation therefore the regression line
will be horizontal to the X axis.

Although r2 can be computed directly from its definition given in (3.5.5),
it can be obtained more quickly from the following formula:

(3.5.6)

r2 = ESS
TSS

=
∑

ŷ2
i∑

y2
i

=
β̂2

2
∑

x2
i∑

y2
i

= β̂2
2

(∑
x2

i∑
y2

i

)

r2 = 1 −
∑

û2
i∑

(Yi − Ȳ)2

= 1 − RSS
TSS

r2 =
∑

(Ŷi − Ȳ)2

∑
(Yi − Ȳ)2

= ESS
TSS
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If we divide the numerator and the denominator of (3.5.6) by the sample
size n (or n − 1 if the sample size is small), we obtain

(3.5.7)

where S2
y and S2

x are the sample variances of Y and X, respectively.
Since β̂2 =

∑
xi yi

/∑
x2

i , Eq. (3.5.6) can also be expressed as

(3.5.8)

an expression that may be computationally easy to obtain.
Given the definition of r2, we can express ESS and RSS discussed earlier as

follows:
ESS = r2 · TSS

= r2
∑

y2
i

(3.5.9)

RSS = TSS − ESS

= TSS(1 − ESS/TSS) (3.5.10)

=
∑

y2
i · (1 − r2)

Therefore, we can write

(3.5.11)

an expression that we will find very useful later.
A quantity closely related to but conceptually very much different from r2

is the coefficient of correlation, which, as noted in Chapter 1, is a measure
of the degree of association between two variables. It can be computed either
from

r = ±
√

r2 (3.5.12)
or from its definition

which is known as the sample correlation coefficient.24

(3.5.13)

r =
∑

xi yi√(∑
x2

i

)(∑
y2

i

)

= n
∑

XiYi − (
∑

Xi)(
∑

Yi)√[
n

∑
X2

i −
(∑

Xi
)2][n

∑
Y2

i −
(∑

Yi
)2]

TSS = ESS + RSS
∑

y2
i = r2

∑
y2

i + (1 − r2)
∑

y2
i

r2 =
(∑

xi yi
)2

∑
x2

i
∑

y2
i

r2 = β̂2
2

(
S2

x

S2
y

)

24The population correlation coefficient, denoted by ρ , is defined in App. A.



Gujarati: Basic 
Econometrics, Fourth 
Edition

I. Single−Equation 
Regression Models

3. Two−Variable 
Regression Model: The 
Problem of Estimation

© The McGraw−Hill 
Companies, 2004

86 PART ONE: SINGLE-EQUATION REGRESSION MODELS

Some of the properties of r are as follows (see Figure 3.11):

1. It can be positive or negative, the sign depending on the sign of the
term in the numerator of (3.5.13), which measures the sample covariation of
two variables.

2. It lies between the limits of −1 and +1; that is, −1 ≤ r ≤ 1.

3. It is symmetrical in nature; that is, the coefficient of correlation be-
tween X and Y(rXY) is the same as that between Y and X(rYX).

4. It is independent of the origin and scale; that is, if we define X*
i =

aXi + C and Y*
i = bYi + d, where a > 0, b > 0, and c and d are constants,

(d) (e) (f )

X

Y

r = +1 r = –1

X

Y

X

Y

(a) (b) (c)

X

Y

X

Y

X

Y

X

Y

X

Y

(h)(g)

r close to –1

r close to +1

r positive but
close to zero

r negative but
close to zero

r = 0 Y = X2

but r = 0

FIGURE 3.11 Correlation patterns (adapted from Henri Theil, Introduction to Econometrics, Prentice-Hall,
Englewood Cliffs, N.J., 1978, p. 86).
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25In regression modeling the underlying theory will indicate the direction of causality
between Y and X, which, in the context of single-equation models, is generally from X to Y.

then r between X* and Y* is the same as that between the original variables
X and Y.

5. If X and Y are statistically independent (see Appendix A for the defi-
nition), the correlation coefficient between them is zero; but if r = 0, it does
not mean that two variables are independent. In other words, zero correla-
tion does not necessarily imply independence. [See Figure 3.11(h).]

6. It is a measure of linear association or linear dependence only; it has no
meaning for describing nonlinear relations. Thus in Figure 3.11(h), Y = X2

is an exact relationship yet r is zero. (Why?)
7. Although it is a measure of linear association between two variables,

it does not necessarily imply any cause-and-effect relationship, as noted in
Chapter 1.

In the regression context, r2 is a more meaningful measure than r, for
the former tells us the proportion of variation in the dependent variable
explained by the explanatory variable(s) and therefore provides an overall
measure of the extent to which the variation in one variable determines
the variation in the other. The latter does not have such value.25 Moreover, as
we shall see, the interpretation of r (= R) in a multiple regression model is
of dubious value. However, we will have more to say about r2 in Chapter 7.

In passing, note that the r2 defined previously can also be computed as the
squared coefficient of correlation between actual Yi and the estimated Yi ,
namely, Ŷi . That is, using (3.5.13), we can write

That is,

(3.5.14)

where Yi = actual Y, Ŷi = estimated Y, and Ȳ = ¯̂Y = the mean of Y. For
proof, see exercise 3.15. Expression (3.5.14) justifies the description of r2 as
a measure of goodness of fit, for it tells how close the estimated Y values are
to their actual values.

3.6 A NUMERICAL EXAMPLE

We illustrate the econometric theory developed so far by considering
the Keynesian consumption function discussed in the Introduction. Recall
that Keynes stated that “The fundamental psychological law . . . is that men

r2 =
(∑

yi ŷi
)2

(∑
y2

i

)(∑
ŷ2

i

)

r2 =
[∑

(Yi − Ȳ)(Ŷi − Ȳ)
]2

∑
(Yi − Ȳ)2

∑
(Ŷi − Ȳ)2
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[women] are disposed, as a rule and on average, to increase their consump-
tion as their income increases, but not by as much as the increase in their
income,” that is, the marginal propensity to consume (MPC) is greater than
zero but less than one. Although Keynes did not specify the exact functional
form of the relationship between consumption and income, for simplicity
assume that the relationship is linear as in (2.4.2). As a test of the Keynesian
consumption function, we use the sample data of Table 2.4, which for con-
venience is reproduced as Table 3.2. The raw data required to obtain the
estimates of the regression coefficients, their standard errors, etc., are given
in Table 3.3. From these raw data, the following calculations are obtained,
and the reader is advised to check them.

β̂1 = 24.4545 var (β̂1) = 41.1370 and se (β̂1) = 6.4138

β̂2 = 0.5091 var (β̂2) = 0.0013 and se (β̂2) = 0.0357

cov (β̂1, β̂2) = −0.2172 σ̂ 2 = 42.1591
(3.6.1)

r2 = 0.9621 r = 0.9809 df = 8

The estimated regression line therefore is

Ŷi = 24.4545 + 0.5091Xi (3.6.2)

which is shown geometrically as Figure 3.12.
Following Chapter 2, the SRF [Eq. (3.6.2)] and the associated regression

line are interpreted as follows: Each point on the regression line gives an
estimate of the expected or mean value of Y corresponding to the chosen X
value; that is, Ŷi is an estimate of E(Y | Xi). The value of β̂2 = 0.5091, which
measures the slope of the line, shows that, within the sample range of X
between $80 and $260 per week, as X increases, say, by $1, the estimated
increase in the mean or average weekly consumption expenditure amounts
to about 51 cents. The value of β̂1 = 24.4545, which is the intercept of the

TABLE 3.2 HYPOTHETICAL DATA ON
WEEKLY FAMILY CONSUMPTION
EXPENDITURE Y AND
WEEKLY FAMILY INCOME X

Y, $ X, $

70 80
65 100
90 120
95 140

110 160
115 180
120 200
140 220
155 240
150 260
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TABLE 3.3 RAW DATA BASED ON TABLE 3.2

xi = yi = û i =
Yi Xi YiXi Xi

2 Xi − X̄ Yi −Ȳ xi
2 xiyi Ŷi Yi −Ŷi Ŷiû i

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

70 80 5600 6400 −90 −41 8100 3690 65.1818 4.8181 314.0524
65 100 6500 10000 −70 −46 4900 3220 75.3636 −10.3636 −781.0382
90 120 10800 14400 −50 −21 2500 1050 85.5454 4.4545 381.0620
95 140 13300 19600 −30 −16 900 480 95.7272 −0.7272 −69.6128

110 160 17600 25600 −10 −1 100 10 105.9090 4.0909 433.2631
115 180 20700 32400 10 4 100 40 116.0909 −1.0909 −126.6434
120 200 24000 40000 30 9 900 270 125.2727 −6.2727 −792.0708
140 220 30800 48400 50 29 2500 1450 136.4545 3.5454 483.7858
155 240 37200 57600 70 44 4900 3080 145.6363 8.3636 1226.4073
150 260 39000 67600 90 39 8100 3510 156.8181 −6.8181 −1069.2014

Sum 1110 1700 205500 322000 0 0 33000 16800 1109.9995 0 0.0040
≈ 1110.0 ≈ 0.0

Mean 111 170 nc nc 0 0 nc nc 110 0 0

β̂2 = β̂1 = Ȳ − β̂2X̄

= 16,800/33,000
= 111 − 0.5091(170)

= 0.5091
= 24.4545

Notes: ≈ symbolizes “approximately equal to”; nc means “not computed.”

∑
xiyi∑
xi

2

Y

111

170
X

24.4545

1

= 0.5091

(Y)

(X)

β2

= 24.4545 + 0.5091 XiYi

Y

FIGURE 3.12 Sample regression line based on the data of Table 3.2.
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line, indicates the average level of weekly consumption expenditure when
weekly income is zero. However, this is a mechanical interpretation of the
intercept term. In regression analysis such literal interpretation of the
intercept term may not be always meaningful, although in the present ex-
ample it can be argued that a family without any income (because of unem-
ployment, layoff, etc.) might maintain some minimum level of consumption
expenditure either by borrowing or dissaving. But in general one has to use
common sense in interpreting the intercept term, for very often the sample
range of X values may not include zero as one of the observed values.

Perhaps it is best to interpret the intercept term as the mean or average
effect on Y of all the variables omitted from the regression model. The value
of r2 of 0.9621 means that about 96 percent of the variation in the weekly
consumption expenditure is explained by income. Since r2 can at most be 1,
the observed r2 suggests that the sample regression line fits the data very
well.26 The coefficient of correlation of 0.9809 shows that the two variables,
consumption expenditure and income, are highly positively correlated. The
estimated standard errors of the regression coefficients will be interpreted
in Chapter 5.

3.7 ILLUSTRATIVE EXAMPLES

26A formal test of the significance of r2 will be presented in Chap. 8.

EXAMPLE 3.1

CONSUMPTION–INCOME RELATIONSHIP
IN THE UNITED STATES, 1982–1996

Let us return to the consumption income data given in
Table I.1 of the Introduction. We have already shown the
data in Figure I.3 along with the estimated regression
line (I.3.3). Now we provide the underlying OLS regres-
sion results. (The results were obtained from the statisti-
cal package Eviews 3.) Note: Y = personal consumption
expenditure (PCE) and X = gross domestic product
(GDP), all measured in 1992 billions of dollars. In this
example, our data are time series data.

Ŷi = −184.0780 + 0.7064Xi (3.7.1)

var (β̂1) = 2140.1707 se (β̂1) = 46.2619

var (β̂2) = 0.000061 se (β̂2) = 0.007827

r 2 = 0.998406 σ̂2 = 411.4913

Equation (3.7.1) is the aggregate (i.e., for the econ-
omy as a whole) Keynesian consumption function.As this
equation shows, the marginal propensity to consume
(MPC) is about 0.71, suggesting that if income goes up by
a dollar, the average personal consumption expenditure

(PCE) goes up by about 71 cents. From Keynesian the-
ory, the MPC is less than 1. The intercept value of about
−184 tells us that if income were zero, the PCE would be
about −184 billion dollars. Of course, such a mechanical
interpretation of the intercept term does not make eco-
nomic sense in the present instance because the zero
income value is out of the range of values we are work-
ing with and does not represent a likely outcome (see
Table I.1). As we will see on many an occasion, very often
the intercept term may not make much economic sense.
Therefore, in practice the intercept term may not be very
meaningful, although on occasions it can be very mean-
ingful, as we will see in some illustrative examples. The
more meaningful value is the slope coefficient, MPC in
the present case.

The r 2 value of 0.9984 means approximately 99 per-
cent of the variation in the PCE is explained by variation
in the GDP. Since r 2 at most can be 1, we can say that
the regression line in (3.7.1), which is shown in Fig-
ure I.3, fits our data extremely well; as you can see from
that figure the actual data points are very tightly clus-
tered around the estimated regression line. As we will
see throughout this book, in regressions involving time
series data one generally obtains high r 2 values. In the
chapter on autocorrelation, we will see the reasons be-
hind this phenomenon.
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EXAMPLE 3.2

FOOD EXPENDITURE IN INDIA

Refer to the data given in Table 2.8 of exercise 2.15. The
data relate to a sample of 55 rural households in India.
The regressand in this example is expenditure on food
and the regressor is total expenditure, a proxy for in-
come, both figures in rupees. The data in this example
are thus cross-sectional data.

On the basis of the given data, we obtained the fol-
lowing regression:

F̂oodExpi = 94.2087 + 0.4368 TotalExpi

(3.7.2)

var (β̂1) = 2560.9401 se (β̂1) = 50.8563

var (β̂2) = 0.0061 se (β̂2) = 0.0783

r 2 = 0.3698 σ̂2 = 4469.6913

From (3.7.2) we see that if total expenditure increases by
1 rupee, on average, expenditure on food goes up by
about 44 paise (1 rupee = 100 paise). If total expendi-
ture were zero, the average expenditure on food would
be about 94 rupees. Again, such a mechanical interpre-
tation of the intercept may not be meaningful. However,
in this example one could argue that even if total expen-
diture is zero (e.g., because of loss of a job), people may
still maintain some minimum level of food expenditure by
borrowing money or by dissaving.

The r 2 value of about 0.37 means that only 37 per-
cent of the variation in food expenditure is explained by
the total expenditure. This might seem a rather low
value, but as we will see throughout this text, in cross-
sectional data, typically one obtains low r 2 values, possi-
bly because of the diversity of the units in the sample.
We will discuss this topic further in the chapter on het-
eroscedasticity (see Chapter 11).

3.8 A NOTE ON MONTE CARLO EXPERIMENTS

In this chapter we showed that under the assumptions of CLRM the least-
squares estimators have certain desirable statistical features summarized in
the BLUE property. In the appendix to this chapter we prove this property

EXAMPLE 3.3

THE RELATIONSHIP BETWEEN EARNINGS
AND EDUCATION

In Table 2.6 we looked at the data relating average hourly earnings and education, as mea-
sured by years of schooling. Using that data, if we regress27 average hourly earnings (Y ) on
education (X ), we obtain the following results.

Ŷi = −0.0144 + 0.7241 Xi (3.7.3)

var (β̂1) = 0.7649 se (β̂1) = 0.8746

var (β̂2) = 0.00483 se (β̂2) = 0.0695

r 2 = 0.9077 σ̂2 = 0.8816

As the regression results show, there is a positive association between education and earn-
ings, an unsurprising finding. For every additional year of schooling, the average hourly earn-
ings go up by about 72 cents an hour. The intercept term is positive but it may have no eco-
nomic meaning. The r 2 value suggests that about 89 percent of the variation in average hourly
earnings is explained by education. For cross-sectional data, such a high r 2 is rather unusual.

27Every field of study has its jargon. The expression “regress Y on X” simply means treat Y
as the regressand and X as the regressor.
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more formally. But in practice how does one know that the BLUE property
holds? For example, how does one find out if the OLS estimators are unbi-
ased? The answer is provided by the so-called Monte Carlo experiments,
which are essentially computer simulation, or sampling, experiments.

To introduce the basic ideas, consider our two-variable PRF:

Yi = β1 + β2 Xi + ui (3.8.1)

A Monte Carlo experiment proceeds as follows:

1. Suppose the true values of the parameters are as follows: β1 = 20 and
β2 = 0.6.

2. You choose the sample size, say n = 25.

3. You fix the values of X for each observation. In all you will have 25 X
values.

4. Suppose you go to a random number table, choose 25 values, and call
them ui (these days most statistical packages have built-in random number
generators).28

5. Since you know β1, β2, Xi , and ui , using (3.8.1) you obtain 25 Yi

values.
6. Now using the 25 Yi values thus generated, you regress these on the 25

X values chosen in step 3, obtaining β̂1 and β̂2, the least-squares estimators.
7. Suppose you repeat this experiment 99 times, each time using the

same β1, β2, and X values. Of course, the ui values will vary from experiment
to experiment. Therefore, in all you have 100 experiments, thus generating
100 values each of β1 and β2. (In practice, many such experiments are con-
ducted, sometimes 1000 to 2000.)

8. You take the averages of these 100 estimates and call them ¯̂
β1 and ¯̂

β2.

9. If these average values are about the same as the true values of β1 and
β2 assumed in step 1, this Monte Carlo experiment “establishes” that the
least-squares estimators are indeed unbiased. Recall that under CLRM
E(β̂1) = β1 and E(β̂2) = β2.

These steps characterize the general nature of the Monte Carlo experiments.
Such experiments are often used to study the statistical properties of vari-
ous methods of estimating population parameters. They are particularly
useful to study the behavior of estimators in small, or finite, samples. These
experiments are also an excellent means of driving home the concept of
repeated sampling that is the basis of most of classical statistical infer-
ence, as we shall see in Chapter 5. We shall provide several examples of
Monte Carlo experiments by way of exercises for classroom assignment. (See
exercise 3.27.)

28In practice it is assumed that ui follows a certain probability distribution, say, normal,
with certain parameters (e.g., the mean and variance). Once the values of the parameters are
specified, one can easily generate the ui using statistical packages.
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3.9 SUMMARY AND CONCLUSIONS

The important topics and concepts developed in this chapter can be sum-
marized as follows.

1. The basic framework of regression analysis is the CLRM.
2. The CLRM is based on a set of assumptions.
3. Based on these assumptions, the least-squares estimators take on cer-

tain properties summarized in the Gauss–Markov theorem, which states
that in the class of linear unbiased estimators, the least-squares estimators
have minimum variance. In short, they are BLUE.

4. The precision of OLS estimators is measured by their standard
errors. In Chapters 4 and 5 we shall see how the standard errors enable one
to draw inferences on the population parameters, the β coefficients.

5. The overall goodness of fit of the regression model is measured by the
coefficient of determination, r2. It tells what proportion of the variation in
the dependent variable, or regressand, is explained by the explanatory vari-
able, or regressor. This r2 lies between 0 and 1; the closer it is to 1, the bet-
ter is the fit.

6. A concept related to the coefficient of determination is the coeffi-
cient of correlation, r. It is a measure of linear association between two
variables and it lies between −1 and +1.

7. The CLRM is a theoretical construct or abstraction because it is
based on a set of assumptions that may be stringent or “unrealistic.” But
such abstraction is often necessary in the initial stages of studying any field
of knowledge. Once the CLRM is mastered, one can find out what happens
if one or more of its assumptions are not satisfied. The first part of this book
is devoted to studying the CLRM. The other parts of the book consider the
refinements of the CLRM. Table 3.4 gives the road map ahead.

TABLE 3.4 WHAT HAPPENS IF THE ASSUMPTIONS OF CLRM ARE VIOLATED?

Assumption number Type of violation Where to study?

1 Nonlinearity in parameters Chapter 14
2 Stochastic regressor(s) Introduction to Part II
3 Nonzero mean of ui Introduction to Part II
4 Heteroscedasticity Chapter 11
5 Autocorrelated disturbances Chapter 12
6 Nonzero covariance between Introduction to Part II and Part IV

disturbances and regressor
7 Sample observations less Chapter 10

than the number of regressors
8 Insufficient variability in regressors Chapter 10
9 Specification bias Chapters 13, 14

10 Multicollinearity Chapter 10
11* Nonnormality of disturbances Introduction to Part II

*Note: The assumption that the disturbances ui are normally distributed is not a part of the CLRM. But more
on this in Chapter 4.
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EXERCISES

Questions

3.1. Given the assumptions in column 1 of the table, show that the assump-
tions in column 2 are equivalent to them.

ASSUMPTIONS OF THE CLASSICAL MODEL

(1) (2)

E(ui |Xi) = 0 E(Yi |Xi) = β2 + β2X

cov (ui, uj) = 0 i ̸= j cov (Yi, Yj) = 0 i ̸= j

var (ui |Xi) = σ2 var (Yi |Xi) = σ2

3.2. Show that the estimates β̂1 = 1.572 and β̂2 = 1.357 used in the first exper-
iment of Table 3.1 are in fact the OLS estimators.

3.3. According to Malinvaud (see footnote 10), the assumption that E(ui | Xi ) =
0 is quite important. To see this, consider the PRF: Y = β1 + β2 Xi + ui . Now
consider two situations: (i) β1 = 0, β2 = 1, and E(ui ) = 0; and (ii) β1 = 1,
β2 = 0, and E(ui ) = (Xi − 1). Now take the expectation of the PRF con-
ditional upon X in the two preceding cases and see if you agree with
Malinvaud about the significance of the assumption E(ui | Xi ) = 0.

3.4. Consider the sample regression

Yi = β̂1 + β̂2 Xi + ûi

Imposing the restrictions (i)
∑

ûi = 0 and (ii)
∑

ûi Xi = 0, obtain the esti-
mators β̂1 and β̂2 and show that they are identical with the least-squares
estimators given in (3.1.6) and (3.1.7). This method of obtaining estimators
is called the analogy principle. Give an intuitive justification for imposing
restrictions (i) and (ii). (Hint: Recall the CLRM assumptions about ui .) In
passing, note that the analogy principle of estimating unknown parame-
ters is also known as the method of moments in which sample moments
(e.g., sample mean) are used to estimate population moments (e.g., the
population mean). As noted in Appendix A, a moment is a summary sta-
tistic of a probability distribution, such as the expected value and variance.

3.5. Show that r 2 defined in (3.5.5) ranges between 0 and 1. You may use the
Cauchy–Schwarz inequality, which states that for any random variables X
and Y the following relationship holds true:

[E(XY)]2 ≤ E(X2)E(Y2)

3.6. Let β̂Y X and β̂XY represent the slopes in the regression of Y on X and X on
Y, respectively. Show that

β̂Y X β̂XY = r 2

where r is the coefficient of correlation between X and Y.
3.7. Suppose in exercise 3.6 that β̂Y X β̂XY = 1. Does it matter then if we regress

Y on X or X on Y? Explain carefully.
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3.8. Spearman’s rank correlation coefficient rs is defined as follows:

rs = 1 −
6

∑
d2

n(n2 − 1)

where d = difference in the ranks assigned to the same individual or phe-
nomenon and n = number of individuals or phenomena ranked. Derive rs

from r defined in (3.5.13). Hint: Rank the X and Y values from 1 to n. Note
that the sum of X and Y ranks is n(n + 1)/2 each and therefore their means
are (n + 1)/2.

3.9. Consider the following formulations of the two-variable PRF:

Model I: Yi = β1 + β2 Xi + ui

Model II: Yi = α1 + α2(Xi − X̄) + ui

a. Find the estimators of β1 and α1 . Are they identical? Are their variances
identical?

b. Find the estimators of β2 and α2 . Are they identical? Are their variances
identical?

c. What is the advantage, if any, of model II over model I?
3.10. Suppose you run the following regression:

yi = β̂1 + β̂2xi + ûi

where, as usual, yi and xi are deviations from their respective mean values.
What will be the value of β̂1? Why? Will β̂2 be the same as that obtained
from Eq. (3.1.6)? Why?

3.11. Let r1 = coefficient of correlation between n pairs of values (Yi , Xi ) and
r2 = coefficient of correlation between n pairs of values (aXi + b, cYi + d),
where a, b, c, and d are constants. Show that r1 = r2 and hence establish
the principle that the coefficient of correlation is invariant with respect to
the change of scale and the change of origin.
Hint: Apply the definition of r given in (3.5.13).
Note: The operations aXi , Xi + b, and aXi + b are known, respectively, as
the change of scale, change of origin, and change of both scale and origin.

3.12. If r, the coefficient of correlation between n pairs of values (Xi , Yi ), is pos-
itive, then determine whether each of the following statements is true or
false:
a. r between (−Xi , −Yi ) is also positive.
b. r between (−Xi , Yi) and that between (Xi , −Yi ) can be either positive or

negative.
c. Both the slope coefficients βyx and βxy are positive, where βyx = slope

coefficient in the regression of Y on X and βxy = slope coefficient in the
regression of X on Y.

3.13. If X1, X2, and X3 are uncorrelated variables each having the same stan-
dard deviation, show that the coefficient of correlation between X1 + X2

and X2 + X3 is equal to 1
2 . Why is the correlation coefficient not zero?

3.14. In the regression Yi = β1 + β2 Xi + ui suppose we multiply each X value by
a constant, say, 2. Will it change the residuals and fitted values of Y?
Explain. What if we add a constant value, say, 2, to each X value?
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3.15. Show that (3.5.14) in fact measures the coefficient of determination.
Hint: Apply the definition of r given in (3.5.13) and recall that 

∑
yi ŷi =∑

( ŷi + ûi ) ŷi =
∑

ŷ2
i , and remember (3.5.6).

3.16. Explain with reason whether the following statements are true, false, or
uncertain:
a. Since the correlation between two variables, Y and X, can range from

−1 to +1, this also means that cov (Y, X) also lies between these limits.
b. If the correlation between two variables is zero, it means that there is

no relationship between the two variables whatsoever.
c. If you regress Yi on Ŷi (i.e., actual Y on estimated Y), the intercept and

slope values will be 0 and 1, respectively.
3.17. Regression without any regressor. Suppose you are given the model:

Yi = β1 + ui . Use OLS to find the estimator of β1 . What is its variance and
the RSS? Does the estimated β1 make intuitive sense? Now consider the
two-variable model Yi = β1 + β2 Xi + ui . Is it worth adding Xi to the
model? If not, why bother with regression analysis?

Problems

3.18. In Table 3.5, you are given the ranks of 10 students in midterm and final
examinations in statistics. Compute Spearman’s coefficient of rank corre-
lation and interpret it.

3.19. The relationship between nominal exchange rate and relative prices. From
the annual observations from 1980 to 1994, the following regression
results were obtained, where Y = exchange rate of the German mark to
the U.S. dollar (GM/$) and X = ratio of the U.S. consumer price index
to the German consumer price index; that is, X represents the relative
prices in the two countries:

Ŷt = 6.682 − 4.318 Xt r 2 = 0.528

se = (1.22)(1.333)

a. Interpret this regression. How would you interpret r 2?
b. Does the negative value of Xt make economic sense? What is the un-

derlying economic theory?
c. Suppose we were to redefine X as the ratio of German CPI to the U.S.

CPI. Would that change the sign of X? And why?
3.20. Table 3.6 gives data on indexes of output per hour (X) and real compen-

sation per hour (Y) for the business and nonfarm business sectors of the
U.S. economy for 1959–1997. The base year of the indexes is 1982 = 100
and the indexes are seasonally adjusted.

Student

Rank A B C D E F G H I J

Midterm 1 3 7 10 9 5 4 8 2 6
Final 3 2 8 7 9 6 5 10 1 4

TABLE 3.5 
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TABLE 3.6 PRODUCTIVITY AND RELATED DATA, BUSINESS SECTOR, 1959–98
[Index numbers, 1992 = 100; quarterly data seasonally adjusted]

Output per hour Compensation
of all persons1 per hour2

Nonfarm Nonfarm
Year or Business business Business business
quarter sector sector sector sector

1959 ……… 50.5 54.2 13.1 13.7
1960 ……… 51.4 54.8 13.7 14.3
1961 ……… 53.2 56.6 14.2 14.8
1962 ……… 55.7 59.2 14.8 15.4
1963 ……… 57.9 61.2 15.4 15.9
1964 ……… 60.6 63.8 16.2 16.7
1965 ……… 62.7 65.8 16.8 17.2
1966 ……… 65.2 68.0 17.9 18.2
1967 ……… 66.6 69.2 18.9 19.3
1968 ……… 68.9 71.6 20.5 20.8
1969 ……… 69.2 71.7 21.9 22.2
1970 ……… 70.6 72.7 23.6 23.8
1971 ……… 73.6 75.7 25.1 25.4
1972 ……… 76.0 78.3 26.7 27.0
1973 ……… 78.4 80.7 29.0 29.2
1974 ……… 77.1 79.4 31.8 32.1
1975 ……… 79.8 81.6 35.1 35.3
1976 ……… 82.5 84.5 38.2 38.4
1977 ……… 84.0 85.8 41.2 41.5
1978 ……… 84.9 87.0 44.9 45.2
1979 ……… 84.5 86.3 49.2 49.5
1980 ……… 84.2 86.0 54.5 54.8
1981 ……… 85.8 87.0 59.6 60.2
1982 ……… 85.3 88.3 64.1 64.6
1983 ……… 88.0 89.9 66.8 67.3
1984 ……… 90.2 91.4 69.7 70.2
1985 ……… 91.7 92.3 73.1 73.4
1986 ……… 94.1 94.7 76.8 77.2
1987 ……… 94.0 94.5 79.8 80.1
1988 ……… 94.7 95.3 83.6 83.7
1989 ……… 95.5 95.8 85.9 86.0
1990 ……… 96.1 96.3 90.8 90.7
1991 ……… 96.7 97.0 95.1 95.1
1992 ……… 100.0 100.0 100.0 100.0
1993 ……… 100.1 100.1 102.5 102.2
1994 ……… 100.7 100.6 104.4 104.2
1995 ……… 101.0 101.2 106.8 106.7
1996 ……… 103.7 103.7 110.7 110.4
1997 ……… 105.4 105.1 114.9 114.5

1Output refers to real gross domestic product in the sector.
2Wages and salaries of employees plus employers’ contributions for social

insurance and private benefit plans. Also includes an estimate of wages, salaries,
and supplemental payments for the self-employed.

Source: Economic Report of the President, 1999, Table B-49, p. 384.
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New York Stock
Price of gold Consumer Price Exchange 
at New York, Index (CPI), (NYSE) Index,

Year $ per troy ounce 1982–84 = 100 Dec. 31, 1965 = 100

1977 147.98 60.6 53.69
1978 193.44 65.2 53.70
1979 307.62 72.6 58.32
1980 612.51 82.4 68.10
1981 459.61 90.9 74.02
1982 376.01 96.5 68.93
1983 423.83 99.6 92.63
1984 360.29 103.9 92.46
1985 317.30 107.6 108.90
1986 367.87 109.6 136.00
1987 446.50 113.6 161.70
1988 436.93 118.3 149.91
1989 381.28 124.0 180.02
1990 384.08 130.7 183.46
1991 362.04 136.2 206.33

Source: Data on CPI and NYSE Index are from the Economic Report of the
President, January 1993, Tables B-59 and B-91, respectively. Data on gold prices are
from U.S. Department of Commerce, Bureau of Economic Analysis, Business
Statistics, 1963–1991, p. 68.

TABLE 3.7

a. Plot Y against X for the two sectors separately.
b. What is the economic theory behind the relationship between the two

variables? Does the scattergram support the theory?
c. Estimate the OLS regression of Y on X. Save the results for a further

look after we study Chapter 5.
3.21. From a sample of 10 observations, the following results were obtained:

∑
Yi = 1110

∑
Xi = 1700

∑
Xi Yi = 205,500

∑
X2

i = 322,000
∑

Y2
i = 132,100

with coefficient of correlation r = 0.9758 . But on rechecking these calcu-
lations it was found that two pairs of observations were recorded:

Y X Y X

90 120 instead of 80 110
140 220 150 210

What will be the effect of this error on r? Obtain the correct r.
3.22. Table 3.7 gives data on gold prices, the Consumer Price Index (CPI), and

the New York Stock Exchange (NYSE) Index for the United States for the
period 1977–1991. The NYSE Index includes most of the stocks listed on
the NYSE, some 1500 plus.
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a. Plot in the same scattergram gold prices, CPI, and the NYSE Index.
b. An investment is supposed to be a hedge against inflation if its price

and/or rate of return at least keeps pace with inflation. To test this
hypothesis, suppose you decide to fit the following model, assuming
the scatterplot in a suggests that this is appropriate:

Gold price t = β1 + β2 CPI t + ut

NYSE index t = β1 + β2 CPI t + ut

3.23. Table 3.8 gives data on gross domestic product (GDP) for the United
States for the years 1959–1997.
a. Plot the GDP data in current and constant (i.e., 1992) dollars against

time.
b. Letting Y denote GDP and X time (measured chronologically starting

with 1 for 1959, 2 for 1960, through 39 for 1997), see if the following
model fits the GDP data:

Yt = β1 + β2 Xt + ut

Estimate this model for both current and constant-dollar GDP.
c. How would you interpret β2?
d. If there is a difference between β2 estimated for current-dollar GDP and

that estimated for constant-dollar GDP, what explains the difference?

TABLE 3.8 NOMINAL AND REAL GDP, UNITED STATES, 1959–1997

Year NGDP RGDP Year NGDP RGDP

1959 507.2000 2210.200 1979 2557.500 4630.600
1960 526.6000 2262.900 1980 2784.200 4615.000
1961 544.8000 2314.300 1981 3115.900 4720.700
1962 585.2000 2454.800 1982 3242.100 4620.300
1963 617.4000 2559.400 1983 3514.500 4803.700
1964 663.0000 2708.400 1984 3902.400 5140.100
1965 719.1000 2881.100 1985 4180.700 5323.500
1966 787.7000 3069.200 1986 4422.200 5487.700
1967 833.6000 3147.200 1987 4692.300 5649.500
1968 910.6000 3293.900 1988 5049.600 5865.200
1969 982.2000 3393.600 1989 5438.700 6062.000
1970 1035.600 3397.600 1990 5743.800 6136.300
1971 1125.400 3510.000 1991 5916.700 6079.400
1972 1237.300 3702.300 1992 6244.400 6244.400
1973 1382.600 3916.300 1993 6558.100 6389.600
1974 1496.900 3891.200 1994 6947.000 6610.700
1975 1630.600 3873.900 1995 7269.600 6761.700
1976 1819.000 4082.900 1996 7661.600 6994.800
1977 2026.900 4273.600 1997 8110.900 7269.800
1978 2291.400 4503.000

Note: NGDP = nominal GDP (current dollars in billions).
RGDP = real GDP (1992 billions of dollars).

Source: Economic Report of the President, 1999, Tables B-1 and B-2, pp. 326–328.
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e. From your results what can you say about the nature of inflation in
the United States over the sample period?

3.24. Using the data given in Table I.1 of the Introduction, verify Eq. (3.7.1).
3.25. For the S.A.T. example given in exercise 2.16 do the following:

a. Plot the female verbal score against the male verbal score.
b. If the scatterplot suggests that a linear relationship between the two

seems appropriate, obtain the regression of female verbal score on
male verbal score.

c. If there is a relationship between the two verbal scores, is the rela-
tionship causal?

3.26. Repeat exercise 3.24, replacing math scores for verbal scores.
3.27. Monte Carlo study classroom assignment: Refer to the 10 X values given in

Table 3.2. Let β1 = 25 and β2 = 0.5. Assume ui ≈ N(0, 9), that is, ui are
normally distributed with mean 0 and variance 9. Generate 100 samples
using these values, obtaining 100 estimates of β1 and β2 . Graph these
estimates. What conclusions can you draw from the Monte Carlo study?
Note: Most statistical packages now can generate random variables from
most well-known probability distributions. Ask your instructor for help,
in case you have difficulty generating such variables.

APPENDIX 3A

3A.1 DERIVATION OF LEAST-SQUARES ESTIMATES

Differentiating (3.1.2) partially with respect to β̂1 and β̂2, we obtain

∂
(∑

û2
i

)

∂β̂1
= −2

∑
(Yi − β̂1 − β̂2 Xi) = −2

∑
ûi (1)

∂
(∑

û2
i

)

∂β̂2
= −2

∑
(Yi − β̂1 − β̂2 Xi)Xi = −2

∑
ûi Xi (2)

Setting these equations to zero, after algebraic simplification and manipu-
lation, gives the estimators given in Eqs. (3.1.6) and (3.1.7).

3A.2 LINEARITY AND UNBIASEDNESS PROPERTIES 
OF LEAST-SQUARES ESTIMATORS

From (3.1.8) we have

β̂2 =
∑

xiYi∑
x2

i
=

∑
kiYi (3)

where

ki = xi(∑
x2

i

)
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which shows that β̂2 is a linear estimator because it is a linear function of Y;
actually it is a weighted average of Yi with ki serving as the weights. It can
similarly be shown that β̂1 too is a linear estimator.

Incidentally, note these properties of the weights ki :

1. Since the Xi are assumed to be nonstochastic, the ki are nonstochas-
tic too.

2.
∑

ki = 0.

3.
∑

k2
i = 1

/∑
x2

i .

4.
∑

kixi =
∑

ki Xi = 1. These properties can be directly verified from
the definition of ki .

For example,
∑

ki =
∑(

xi∑
x2

i

)
= 1

∑
x2

i

∑
xi , since for a given sample

∑
x2

i is known

= 0, since
∑

xi , the sum of deviations from
the mean value, is always zero

Now substitute the PRF Yi = β1 + β2 Xi + ui into (3) to obtain

β̂2 =
∑

ki(β1 + β2 Xi + ui)

= β1

∑
ki + β2

∑
ki Xi +

∑
kiui (4)

= β2 +
∑

kiui

where use is made of the properties of ki noted earlier.
Now taking expectation of (4) on both sides and noting that ki , being non-

stochastic, can be treated as constants, we obtain

E(β̂2) = β2 +
∑

ki E(ui)

= β2

(5)

since E(ui) = 0 by assumption. Therefore, β̂2 is an unbiased estimator of β2.

Likewise, it can be proved that β̂1 is also an unbiased estimator of β1.

3A.3 VARIANCES AND STANDARD ERRORS 
OF LEAST-SQUARES ESTIMATORS

Now by the definition of variance, we can write

var (β̂2) = E[β̂2 − E(β̂2)]2

= E(β̂2 − β2)2 since E(β̂2) = β2

= E
(∑

kiui

)2
using Eq. (4) above

= E
(
k2

1u2
1 + k2

2u2
2 + · · · + k2

nu2
n + 2k1k2u1u2 + · · · + 2kn−1knun−1un

)

(6)
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Since by assumption, E(u2
i ) = σ 2 for each i and E(uiuj) = 0, i ̸= j, it follows

that

var (β̂2) = σ 2
∑

k2
i

= σ 2

∑
x2

i
(using the definition of k2

i )

= Eq. (3.3.1)

(7)

The variance of β̂1 can be obtained following the same line of reasoning
already given. Once the variances of β̂1 and β̂2 are obtained, their positive
square roots give the corresponding standard errors.

3A.4 COVARIANCE BETWEEN β̂1 AND β̂2

By definition,

cov (β̂1, β̂2) = E{[β̂1 − E(β̂1)][β̂2 − E(β̂2)]}

= E(β̂1 − β1)(β̂2 − β2) (Why?)

= −X̄E(β̂2 − β2)2 (8)

= −X̄ var (β̂2)

= Eq. (3.3.9)

where use is made of the fact that β̂1 = Ȳ − β̂2 X̄ and E(β̂1) = Ȳ − β2 X̄, giving
β̂1 − E(β̂1) = −X̄(β̂2 − β2). Note: var (β̂2) is given in (3.3.1).

3A.5 THE LEAST-SQUARES ESTIMATOR OF σ2

Recall that

Yi = β1 + β2 Xi + ui (9)

Therefore,

Ȳ = β1 + β2 X̄ + ū (10)

Subtracting (10) from (9) gives

yi = β2xi + (ui − ū) (11)

Also recall that

ûi = yi − β̂2xi (12)

Therefore, substituting (11) into (12) yields

ûi = β2xi + (ui − ū) − β̂2xi (13)
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Collecting terms, squaring, and summing on both sides, we obtain
∑

û2
i = (β̂2 − β2)2

∑
x2

i +
∑

(ui − ū)2 − 2(β̂2 − β2)
∑

xi(ui − ū) (14)

Taking expectations on both sides gives

E
(∑

û2
i

)
=

∑
x2

i E(β̂2 − β2)2 + E
[∑

(ui − ū)2
]

− 2E
[
(β̂2 − β2)

∑
xi(ui − ū)

]

=
∑

x2
i var (β̂2) + (n − 1) var (ui) − 2E

[∑
kiui(xiui)

]

= σ 2 + (n − 1) σ 2 − 2E
[∑

kixiu2
i

]
(15)

= σ 2 + (n − 1) σ 2 − 2σ 2

= (n − 2)σ 2

where, in the last but one step, use is made of the definition of ki given in
Eq. (3) and the relation given in Eq. (4). Also note that

E
∑

(ui − ū)2 = E
[∑

u2
i − nū2

]

= E

[
∑

u2
i − n

(∑
ui

n

)2
]

= E
[∑

u2
i − 1

n

∑(
u2

i

)]

= nσ 2 − n
n
σ 2 = (n − 1)σ 2

where use is made of the fact that the ui are uncorrelated and the variance
of each ui is σ 2.

Thus, we obtain

E
(∑

û2
i

)
= (n − 2)σ 2 (16)

Therefore, if we define

σ̂ 2 =
∑

û2
i

n − 2
(17)

its expected value is

E(σ̂ 2) = 1
n − 2

E
(∑

û2
i

)
= σ 2 using (16) (18)

which shows that σ̂ 2 is an unbiased estimator of true σ 2.
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3A.6 MINIMUM-VARIANCE PROPERTY
OF LEAST-SQUARES ESTIMATORS

It was shown in Appendix 3A, Section 3A.2, that the least-squares estimator
β̂2 is linear as well as unbiased (this holds true of β̂1 too). To show that these
estimators are also minimum variance in the class of all linear unbiased
estimators, consider the least-squares estimator β̂2:

β̂2 =
∑

kiYi

where

ki = Xi − X̄
∑

(Xi − X̄)2
= xi∑

x2
i

(see Appendix 3A.2) (19)

which shows that β̂2 is a weighted average of the Y ’s, with ki serving as the
weights.

Let us define an alternative linear estimator of β2 as follows:

β∗
2 =

∑
wiYi (20)

where wi are also weights, not necessarily equal to ki . Now

E(β∗
2) =

∑
wi E(Yi)

=
∑

wi(β1 + β2 Xi) (21)

= β1

∑
wi + β2

∑
wi Xi

Therefore, for β∗
2 to be unbiased, we must have

∑
wi = 0 (22)

and ∑
wi Xi = 1 (23)

Also, we may write

var (β∗
2) = var

∑
wiYi

=
∑

w2
i var Yi [Note: var Yi = var ui = σ 2]

= σ 2
∑

w2
i [Note: cov (Yi , Yj) = 0 (i ̸= j)]

= σ 2
∑(

wi − xi∑
x2

i
+ xi∑

x2
i

)2

(Note the mathematical trick)

= σ 2
∑(

wi − xi∑
x2

i

)2

+ σ 2
∑

x2
i(∑

x2
i

)2 + 2σ 2
∑(

wi − xi∑
x2

i

)(
xi∑
x2

i

)

= σ 2
∑(

wi − xi∑
x2

i

)2

+ σ 2
(

1
∑

x2
i

)
(24)

because the last term in the next to the last step drops out. (Why?)
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Since the last term in (24) is constant, the variance of (β*
2) can be mini-

mized only by manipulating the first term. If we let

wi = xi∑
x2

i
Eq. (24) reduces to

var (β*
2) = σ 2

∑
x2

i

= var (β̂2)

(25)

In words, with weights wi = ki , which are the least-squares weights, the
variance of the linear estimator β*

2 is equal to the variance of the least-
squares estimator β̂2; otherwise var (β*

2) > var (β̂2). To put it differently, if
there is a minimum-variance linear unbiased estimator of β2, it must be the
least-squares estimator. Similarly it can be shown that β̂1 is a minimum-
variance linear unbiased estimator of β1.

3A.7 CONSISTENCY OF LEAST-SQUARES ESTIMATORS

We have shown that, in the framework of the classical linear regression
model, the least-squares estimators are unbiased (and efficient) in any
sample size, small or large. But sometimes, as discussed in Appendix A, an
estimator may not satisfy one or more desirable statistical properties in
small samples. But as the sample size increases indefinitely, the estimators
possess several desirable statistical properties. These properties are known
as the large sample, or asymptotic, properties. In this appendix, we will
discuss one large sample property, namely, the property of consistency,
which is discussed more fully in Appendix A. For the two-variable model
we have already shown that the OLS estimator β̂2 is an unbiased estimator
of the true β2. Now we show that β̂2 is also a consistent estimator of β2. As
shown in Appendix A, a sufficient condition for consistency is that β̂2 is
unbiased and that its variance tends to zero as the sample size n tends to
infinity.

Since we have already proved the unbiasedness property, we need only
show that the variance of β̂2 tends to zero as n increases indefinitely. We
know that

var (β̂2) = σ 2

∑
x2

i
= σ 2/n

∑
x2

i /n
(26)

By dividing the numerator and denominator by n, we do not change the
equality.

Now

lim var (β̂2)
︸ ︷︷ ︸

= lim
(

σ 2/n
∑

x2
i /n

)

︸ ︷︷ ︸
= 0 (27)

n → ∞ n → ∞
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where use is made of the facts that (1) the limit of a ratio quantity is the
limit of the quantity in the numerator to the limit of the quantity in the de-
nominator (refer to any calculus book); (2) as n tends to infinity, σ 2/n tends
to zero because σ 2 is a finite number; and [(

∑
x2

i )/n] ̸= 0 because the vari-
ance of X has a finite limit because of Assumption 8 of CLRM.

The upshot of the preceding discussion is that the OLS estimator β̂2 is a
consistent estimator of true β2. In like fashion, we can establish that β̂1 is
also a consistent estimator. Thus, in repeated (small) samples, the OLS esti-
mators are unbiased and as the sample size increases indefinitely the OLS
estimators are consistent. As we shall see later, even if some of the assump-
tions of CLRM are not satisfied, we may be able to obtain consistent esti-
mators of the regression coefficients in several situations.
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